

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I²C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 14x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pcf51qm64vlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device:

- 1. Go to http://www.freescale.com.
- 2. Perform a part number search for the following partial device numbers: PCF51QM and MCF51QM.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q CCCC DD MMM T PP

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
сссс	Core code	CF51 = ColdFire V1
DD	Device number	JF, JU, QF, QH, QM, QU

Table continues on the next page...

Terminology and guidelines

Field	Description	Values
МММ	Memory size (program flash memory) ¹	 32 = 32 KB 64 = 64 KB 128 = 128 KB
Т	Temperature range, ambient (°C)	V = -40 to 105
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) HS = 44 Laminate QFN (5 mm x 5 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm)

1. All parts also have FlexNVM, FlexRAM, and RAM.

2.4 Example

This is an example part number:

MCF51QM128VLH

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.1.1 Example

This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

Figure 1. Run mode supply current vs. core frequency

Figure 2. VLPR mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors Table 6. EMC radiated emissions operating behaviors

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	20	dBµV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	19		
V _{RE3}	Radiated emissions voltage, band 3	150–500	17		
V _{RE4}	Radiated emissions voltage, band 4	500–1000	16		
V _{RE_IEC}	IEC level	0.15–1000	L	_	2, 3

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions, and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method.

Nonswitching electrical specifications

- 2. $V_{DD} = 3 \text{ V}, \text{ T}_{A} = 25 \text{ °C}, \text{ f}_{OSC} = 32 \text{ kHz} \text{ (crystal)}, \text{ f}_{BUS} = 24 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method.

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to http://www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 7. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

5.3 Switching electrical specifications

Table 8. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run moo	le			
f _{SYS}	System and core clock	_	50	MHz	
f _{BUS}	Bus clock	_	25	MHz	
FB_CLK	Mini-FlexBus clock	_	25	MHz	1
f _{LPTMR}	LPTMR clock	—	25	MHz	
VLPR mode					
f _{SYS}	System and core clock	_	2	MHz	
f _{BUS}	Bus clock	—	1	MHz	
FB_CLK	Mini-FlexBus clock	_	1	MHz	1
f _{LPTMR}	LPTMR clock ²	_	25	MHz	

1. When the Mini-FlexBus is enabled, its clock frequency is always the same as the bus clock frequency.

2. A maximum frequency of 25 MHz for the LPTMR in VLPR mode is possible when the LPTMR is configured for pulse counting mode and is driven externally via the LPTMR_ALT1, LPTMR_ALT2, or LPTMR_ALT3 pin.

Thermal specifications

The following general purpose specifications apply to all signals configured for RGPIO, FTM, and UART. The conditions are 25 pf load, $V_{DD} = 3.6$ V to 1.71 V, and full temperature range. The GPIO are set for high drive, no slew rate control, and no input filter, digital or analog, unless otherwise specified.

Symbol	Description	Min.	Max.	Unit
R1	CPUCLK from CLK_OUT pin high to GPIO output valid	—	16	ns
R2	CPUCLK from CLK_OUT pin high to GPIO output invalid (output hold)	1		ns
R3	GPIO input valid to bus clock high	17	_	ns
R4	CPUCLK from CLK_OUT pin high to GPIO input invalid	—	2	ns

Table 10. RGPIO General Control Timing

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	115	°C
T _A	Ambient temperature	-40	105	°C

Board type	Symbol	Description	64 LQFP	48 LQFP	44 Laminate QFN	32 QFN	Unit	Notes
Single-layer (1s)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	73	79	108	98	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	54	55	69	33	°C/W	1
Single-layer (1s)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	61	66	91	81	°C/W	1
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	48	48	63	28	°C/W	1
_	R _{θJB}	Thermal resistance, junction to board	37	34	44	13	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	20	20	31	2.2	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	5.0	4.0	6.0	6.0	°C/W	4

5.4.2 Thermal attributes

1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions — Forced Convection (Moving Air).

2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board.

3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.

4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions – Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 Debug specifications

Table 12. Background debug mode (BDM) timing

Number	Symbol	Description	Min.	Max.	Unit
1	t _{MSSU}	BKGD/MS setup time after issuing background debug force reset to enter user mode or BDM	500	_	ns
2	t _{MSH}	BKGD/MS hold time after issuing background debug force reset to enter user mode or BDM ¹	100	_	μs

6.3 Clock modules

6.3.1 MCG specifications

Table 14. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	frequency (slow clock) — nominal VDD and 25 °C		32.768	_	kHz	
f _{ints_t}	Internal reference trimmed	frequency (slow clock) — user	31.25		39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimi frequency at fixed using SCTRIM an	med average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$	Resolution of trimi frequency at fixed using SCTRIM on	_	± 0.2	± 0.5	%f _{dco}	1	
Δf _{dco_t}	Total deviation of frequency over vo	_	± 10	_	%f _{dco}	1	
∆f _{dco_t}	Total deviation of frequency over fix range of 0–70°C	_	± 1.0	± 4.5	%f _{dco}	1	
f _{intf_ft}	Internal reference factory trimmed at	_	3.3	4	MHz		
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C		3		5	MHz	
f _{loc_low}	Loss of external c RANGE = 00	(3/5) x f _{ints_t}	_	_	kHz		
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	_	_	kHz	
	•	FI	L	•			
f _{fll_ref}	FLL reference free	quency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output	Low range (DRS=00)	20	20.97	25	MHz	2, 3
	frequency range	$640 \times f_{fll_ref}$					
		Mid range (DRS=01)	40	41.94	50	MHz	
		$1280 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	60	62.91	75	MHz	
		1920 × f _{fll_ref}					
		High range (DRS=11)	80	83.89	100	MHz	
		$2560 \times f_{fll_ref}$					

Table continues on the next page ...

Clock modules

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{dco_t_DMX3}	DCO output	Low range (DRS=00)	—	23.99	—	MHz	4, 5
2	trequency	$732 \times f_{fll_ref}$					
		Mid range (DRS=01)	_	47.97		MHz	
		$1464 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	_	71.99		MHz	
		$2197 \times f_{fll_ref}$					
		High range (DRS=11)	—	95.98		MHz	
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter			180		ps	
	 f_{VCO} = 48 M f_{VCO} = 98 M 	Hz Hz	—	150	_		
t _{fll_acquire}	FLL target frequer	ncy acquisition time	—	_	1	ms	6
		PI	_L				
f _{vco}	VCO operating fre	equency	48.0	_	100	MHz	
I _{pli}	PLL operating cur PLL @ 96 M 2 MHz, VDI	rent /Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 48)		1060	_	μA	7
I _{pli}	PLL operating cur PLL @ 48 M 2 MHz, VDI	rent 1Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = V multiplier = 24)	_	600	_	μA	7
f _{pll_ref}	PLL reference free	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					8
	• f _{vco} = 48 MH	łz	—	120	_	ps	
	• f _{vco} = 100 M	Hz	—	50	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					8
	• f _{vco} = 48 MH	łz	—	1350	—	ps	
	• f _{vco} = 100 M	Hz	—	600		ps	
D _{lock}	Lock entry frequer	ncy tolerance	± 1.49	_	± 2.98	%	
D _{unl}	Lock exit frequence	cy tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector dete	ection time	_	_	$150 \times 10^{-6} + 1075(1/f_{pll_ref})$	S	9

Table 14. MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.

 The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.

- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time		13	113	ms	1
t _{hversblk32k}	Erase Block high-voltage time for 32 KB		52	452	ms	1
t _{hversblk128k}	Erase Block high-voltage time for 128 KB	_	208	1808	ms	1

Table 17. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

6.4.1.2 Flash timing specifications — commands Table 18. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk32k}	32 KB data flash	—	—	0.5	ms	
t _{rd1blk128k}	128 KB program flash	_	_	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (data flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time			45	μs	1
t _{rdrsrc}	Read Resource execution time	—	_	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	
	Erase Flash Block execution time					2
t _{ersblk32k}	32 KB data flash	_	55	465	ms	
t _{ersblk128k}	128 KB program flash	_	220	1850	ms	
t _{ersscr}	Erase Flash Sector execution time	_	14	114	ms	2
	Program Section execution time					
t _{pgmsec512}	• 512 B flash	—	4.7	—	ms	
t _{pgmsec1k}	• 1 KB flash	_	9.3	_	ms	
t _{rd1all}	Read 1s All Blocks execution time			1.8	ms	
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time	_	65		μs	
t _{ersall}	Erase All Blocks execution time		275	2350	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—		30	μs	1
	Program Partition for EEPROM execution time					
t _{pgmpart32k}	32 KB FlexNVM	_	70	_	ms	

Table continues on the next page...

Memories and memory interfaces

Symbol	Description	Min.	Тур.	Max.	Unit	Notes	
	Set FlexRAM Function execution time:						
t _{setramff}	Control Code 0xFF	_	50	_	μs		
t _{setram8k}	8 KB EEPROM backup	_	0.3	0.5	ms		
t _{setram32k}	32 KB EEPROM backup	_	0.7	1.0	ms		
	Byte-write to FlexRAM	for EEPRON	l operation		•	•	
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	_	175	260	μs	3	
	Byte-write to FlexRAM execution time:						
t _{eewr8b8k}	8 KB EEPROM backup	_	340	1700	μs		
t _{eewr8b16k}	16 KB EEPROM backup	_	385	1800	μs		
t _{eewr8b32k}	32 KB EEPROM backup	_	475	2000	μs		
Word-write to FlexRAM for EEPROM operation							
t _{eewr16bers}	Word-write to erased FlexRAM location execution time	_	175	260	μs		
	Word-write to FlexRAM execution time:						
t _{eewr16b8k}	8 KB EEPROM backup	_	340	1700	μs		
t _{eewr16b16k}	16 KB EEPROM backup	_	385	1800	μs		
t _{eewr16b32k}	32 KB EEPROM backup	_	475	2000	μs		
	Longword-write to FlexRA	M for EEPR	OM operation	ו			
t _{eewr32bers}	Longword-write to erased FlexRAM location execution time		360	540	μs		
	Longword-write to FlexRAM execution time:						
t _{eewr32b8k}	8 KB EEPROM backup	_	545	1950	μs		
t _{eewr32b16k}	16 KB EEPROM backup	_	630	2050	μs		
t _{eewr32b32k}	32 KB EEPROM backup	_	810	2250	μs		

Table 18. Flash command timing specifications (continued)

1. Assumes 25MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

6.4.1.3 Flash (FTFL) current and power specifications Table 19. Flash (FTFL) current and power specifications

Symbol	Description	Тур.	Unit
I _{DD_PGM}	Worst case programming current in program flash	10	mA

Table 22. Flexbus switching specifications (continued)

Num	Description	Min.	Max.	Unit	Notes
FB2	Address, data, and control output valid		20	ns	1
FB3	Address, data, and control output hold	1	—	ns	1
FB4	Data and FB_TA input setup	20	—	ns	2
FB5	Data and FB_TA input hold	10	—	ns	2

1. Specification is valid for all FB_AD[31:0], FB_CSn, FB_OE, FB_R/W, and FB_TS.

2. Specification is valid for all FB_AD[31:0].

Note

The following diagrams refer to signal names that may not be included on your particular device. Ignore these extraneous signals.

Also, ignore the AA=0 portions of the diagrams because this setting is not supported in the Mini-FlexBus.

Figure 8. Mini-FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

Figure 12. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)

Figure 15. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 28.	VREF full-range	operating	requirement
i able 28.	VREF full-range	operating	requiremen

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	-40	105	°C	
CL	Output load capacitance	100		nF	1

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1965	1.2	1.2027	V	
V _{out}	Voltage reference output with— factory trim	1.1584	—	1.2376	V	
V _{out}	Voltage reference output — user trim	1.198	—	1.202	V	
V _{step}	Voltage reference trim step	_	0.5		mV	
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	_	80	mV	
I _{bg}	Bandgap only (MODE_LV = 00) current	—	—	80	μA	
l _{tr}	Tight-regulation buffer (MODE_LV =10) current	—	—	1.1	mA	
ΔV_{LOAD}	Load regulation (MODE_LV = 10)				mV	1
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA	_	5			
T _{stup}	Buffer startup time			100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range) (MODE_LV = 10, REGEN = 1)	_	2		mV	

Table 29. VREF full-range operating behaviors

1. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 30. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 31. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General Switching Specifications.

Pino	ut												
64- pin	48- pin	44- pin	32- pin	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
48	35	31	24	VDD	VDD								
49	36	32	25	VSS	VSS								
50	37	33	26	EXTAL1	EXTAL1	PTB7		I2C1_SDA	TMR_CLKI N1				
51	38	34	27	XTAL1	XTAL1	PTC0		I2C1_SCL	TMR_CLKI N0	RGPIO0			
52	39	35	28	RESET_b	Disabled	PTC1	RESET_b						
53	-	-	-	CMP0_IN0	CMP0_IN0	PTF0	SPI0_SS				FBa_AD5		
54	_	_	_	Disabled	Disabled	PTF1	SPI0_SCLK			CMP0_OUT	FBa_AD6		
55	_	_	_	CMP0_IN1	CMP0_IN1	PTF2	SPI0_MISO				FBa_AD7		
56	40	36	_	CMP0_IN2	CMP0_IN2	PTF3	SPI0_MOSI			RGPI01	FBa_AD8		
57	41	37	29	CMP0_IN3	CMP0_IN3	PTC2	UART1_RT S_b	SPI1_SS		RGPIO2	FBa_AD18		
58	42	38	_	Disabled	Disabled	PTF4	UART1_CT S_b	SPI1_SCLK		FBa_D3	FBa_AD19		
59	43	39	_	Disabled	Disabled	PTF5	UART1_RX	SPI1_MISO		FBa_D2	FBa_RW_b		
60	44	40	-	Disabled	Disabled	PTF6	UART1_TX	SPI1_MOSI		FBa_D1	FBa_AD9		
61	45	41	-	Disabled	Disabled	PTF7	UART0_RT S_b		SPI0_SS	FBa_D0	FBa_AD10		
62	46	42	30	Disabled	Disabled	PTC3	UART0_CT	RGPIO3	SPI0_SCLK	CLKOUT			

8.2 Pinout diagrams

31

32

Disabled

Disabled

Disabled

Disabled

PTC4

PTC5

The following diagrams show pinouts for the 64-pin, 48-pin, 44-pin, and 32-pin packages. These diagrams are representations for ease of reference. See the package drawings for mechanical details.

Sb

UARTO_RX

UART0_TX

RGPIO4

RGPI05

SPI0_MISO

SPI0_MOSI

PDB0_EXT RG

CMT_IRO

For each pin, the diagrams show the default function or (when disabled is the default) the ALT1 signal for a GPIO function. However, many signals may be multiplexed onto a single pin.

63

64

47

48

43

44

Table 35.	Module signals by	v GPIO port and	pin (continued)
	module signals b	y an io portaina	

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)
39	27	25	19	PTB2	PTE3
41	29			PTE4	PTE4
42	30			PTE5	PTE5
43				PTE6	PTE6
44	31	27		PTE7	PTE7
	1	P.	TF		
53				PTF0	PTF0
54				PTF1	PTF1
55				PTF2	PTF2
56	40	36		PTF3	PTF3
58	42	38		PTF4	PTF4
59	43	39		PTF5	PTF5
60	44	40		PTF6	PTF6
61	45	41		PTF7	PTF7
	1	5 V \	/REG		
22	18	16	13		VOUT33
21	17	15	12		VREGIN
		AD	0C0		
19	15	13	10		ADC0_DP0/ ADC0_SE0
20	16	14	11		ADC0_DM0/ ADC0_SE1
11	7	5	5	PTA4	ADC0_DP1/ ADC0_SE2
12	8	6	6	PTA5	ADC0_DM1/ ADC0_SE3
25	21	19	15	PTA6	ADC0_SE8
26				PTD2	ADC0_SE9
27	22	20		PTD3	ADC0_SE10
28				PTD4	ADC0_SE11
29				PTD5	ADC0_SE12
30	23	21	16	PTA7	ADC0_SE13
31	24	22		PTD6	ADC0_SE14
32				PTD7	ADC0_SE15
38				PTE3	ADC0_SE16
39	27	25	19	PTB2	ADC0_SE17

Table continues on the next page ...

Table 35.	Module signals by GPIO port and pin (continued)	
-----------	---	--

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)	
40	28	26	20	PTB3	ADC0_SE18	
41	29			PTE4	ADC0_SE19	
42	30			PTE5	ADC0_SE20	
43				PTE6	ADC0_SE21	
44	31	27		PTE7	ADC0_SE22	
13	9	7	7		VDDA	
14	10	8			VREFH	
16	12	10			VREFL	
17	13	11	8		VSSA	
		DA	C0			
18	14	12	9		DAC0_OUT	
		VF	EF			
15	11	9			VREF_OUT	
	•	CM	1P0			
53				PTF0	CMP0_IN0	
55				PTF2	CMP0_IN1	
56	40	36		PTF3	CMP0_IN2	
57	41	37	29	PTC2	CMP0_IN3	
54				PTF1	CMP0_OUT	
		CI	ИТ			
64	48	44	32	PTC5	CMT_IRO	
TSIO						
25	21	19	15	PTA6	TSI0_CH0	
26				PTD2	TSI0_CH1	
27	22	20		PTD3	TSI0_CH2	
28				PTD4	TSI0_CH3	
29				PTD5	TSI0_CH4	
30	23	21	16	PTA7	TSI0_CH5	
31	24	22		PTD6	TSI0_CH6	
32				PTD7	TSI0_CH7	
33				PTE0	TSI0_CH8	
34				PTE1	TSI0_CH9	
36	26	24	18	PTB1	TSI0_CH10	
37				PTE2	TSI0_CH11	
38				PTE3	TSI0_CH12	

Table continues on the next page...

Table 35.	Module signals by	y GPIO p	port and p	pin ((continued))
-----------	-------------------	----------	------------	-------	-------------	---

64-pin	48-pin	44-pin	32-pin	Port	Module signal(s)	
60	44	40		PTF6	FBa_D1	
59	43	39		PTF5	FBa_D2	
58	42	38		PTF4	FBa_D3	
31	24	22		PTD6	FBa_D4	
30	23	21	16	PTA7	FBa_D5	
27	22	20		PTD3	FBa_D6	
25	21	19	15	PTA6	FBa_D7	
44	31	27		PTE7	FBa_RW_b	
		I2C0 ai	nd I2C1			
3				PTC6	I2C0_SCL	
35	25	23	17	PTB0	I2C0_SCL	
4				PTC7	I2C0_SDA	
36	26	24	18	PTB1	I2C0_SDA	
6	2			PTD1	I2C1_SCL	
42	30			PTE5	I2C1_SCL	
51	38	34	27	PTC0	I2C1_SCL	
5	1			PTD0	I2C1_SDA	
43				PTE6	I2C1_SDA	
50	37	33	26	PTB7	I2C1_SDA	
		12C2 ai	nd I2C3			
7	3	1	1	PTA0	I2C2_SCL	
11	7	5	5	PTA4	I2C2_SCL	
8	4	2	2	PTA1	I2C2_SDA	
12	8	6	6	PTA5	I2C2_SDA	
32				PTD7	I2C3_SCL	
37				PTE2	I2C3_SCL	
33				PTE0	I2C3_SDA	
38				PTE3	I2C3_SDA	
SPI0						
39	27	25	19	PTB2	SPI0_MISO	
55				PTF2	SPI0_MISO	
63	47	43	31	PTC4	SPI0_MISO	
38				PTE3	SPI0_MOSI	
40	28	26	20	PTB3	SPI0_MOSI	
56	40	36		PTF3	SPI0_MOSI	

Table continues on the next page...