

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, CSI, I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	130
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 31x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f113thlfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.9 P80 to P87 (Port 8)	
2.2.10 P90 to P97 (Port 9)	
2.2.11 P100 to P107 (Port 10)	
2.2.12 P110 to P117 (Port 11)	
2.2.13 P120 to P127 (Port 12)	
2.2.14 P130 to P137 (Port 13)	
2.2.15 P140 to P147 (Port 14)	
2.2.16 P150 to P157 (Port 15)	
2.2.17 P160 to P167 (Port 16)	
2.2.18 VDD, EVDD0, EVDD1, VSS, EVSS0, E	VSS1
2.2.19 RESET	
2.2.20 REGC	
2.3 Recommended Connection of Unused Pire	าร51
CHAPTER 3 CPU ARCHITECTURE	
3.1 Memory Space	
3.1.1 Internal program memory space	
3.1.2 Mirror area	
3.1.3 Internal data memory space	
3.1.4 Special function register (SFR) area	
3.1.5 Extended special function register (2nd S	SFR: 2nd Special Function Register) area
3.1.6 Data memory addressing	
3.2 Processor Registers	
3.2.1 Control registers	
3.2.2 General-purpose registers	
3.2.3 ES and CS registers	
3.2.4 Special function registers (SFRs)	
3.2.5 Extended special function registers (2nd	SFRs: 2nd Special Function Registers)95
3.3 Instruction Address Addressing	
3.3.1 Relative addressing	
3.3.2 Immediate addressing	
3.3.3 Table indirect addressing	
3.3.4 Register direct addressing	
3.4 Addressing for Processing Data Address	es 151
3.4.1 Implied addressing	
3.4.2 Register addressing	
3.4.3 Direct addressing	
3.4.4 Short direct addressing	
3.4.5 SFR addressing	
3.4.6 Register indirect addressing	
3.4.7 Based addressing	

Figure 4-43. Block Diagram of P56

- P5: Port register 5
- PU5: Pull-up resistor option register 5
- PM5: Port mode register 5
- PMS: Port mode select register
- RD: Read signal
- WRxx: Write signal

Figures 4-53 to 4-60 show block diagrams of port 7 for 144-pin products.

4.6.2 Notes on specifying the pin settings

For an output pin to which multiple functions are assigned, the output of the unused alternate functions must be set to its initial state so as to prevent conflicting outputs. This also applies to the functions assigned by using the peripheral I/O redirection register (PIOR). For details about the alternate function output, see **4.5 Settings of Port Mode Register and Output Latch When Using Alternate Function**.

Set PIOR register before the target function is enabled.

No specific setting is required for input pins because the output of their alternate functions is disabled (the buffer output is Hi-Z).

Disabling the unused functions, including blocks that are only used for input or do not have I/O, is recommended for lower power consumption.

- Remark 144-pin products m: Unit number (m = 0 to 2), n: Master Channel number (n = 0, 2, 4) 100-pin, 80-pin, 64-pin, and 48-pin products m: Unit number (m = 0 and 1), n: Master Channel number (n = 0, 2, 4)
 - p: Slave channel number 1, q: Slave channel number 2
 - n (Where p and q are integers greater than n)

7.3.9 Port mode registers 1, 4 (PM1, PM4)

These registers set input/output of ports 1 and 4 in 1-bit units.

When using the ports (such as P41/TRJIO0 and P10/TRJO0) to be shared with the timer output pin for timer output, set the port mode register (PMxx) bit and the port register (Pxx) bit corresponding to each port to 0.

Example: When using P41/TRJIO0 for timer output Set the PM41 bit of port mode register 4 to 0. Set the P41 bit of port register 4 to 0.

When using the ports (such as P41/TRJIO0) to be shared with the timer input pin for timer input, set the port mode register (PMxx) bit corresponding to each port to 1. At this time, the port register (Pxx) bit may be 0 or 1.

Example: When using P41/TRJIO0 for timer input Set the PM41 bit of port mode register 4 to 1. Set the P41 bit of port register 4 to 1.

The PM1 and PM4 registers can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets these registers to FFH.

Figure 7-10. Format of Port Mode Registers 1, 4 (PM1, PM4)

Address: FFF	21H After re	set: FFH R/V	N							
Symbol	7	6	5	4	3	2	1	0		
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10		
Address: FFF	24H After re	eset: FFH R/	N							
Symbol	7	6	5	4	3	2	1	0		
PM4	PM47	PM46	PM45	PM44	PM43	PM42	PM41	PM40		
PMmn Pmn pin I/O mode selection (m = 1, 4; n = 0 to 7)										
	0 Output mode (output buffer on)									
	1	Input mode (output buffer off)								

8.3.5 Reset Synchronous PWM Mode

In this mode, three normal-phases and three counter-phases of the PWM waveform are output with the same period (three-phase, sawtooth wave modulation, and no dead time).

Figure 8-55 shows the Block Diagram of Reset Synchronous PWM Mode, Table 8-17 lists the Reset Synchronous PWM Mode Specifications, Figure 8-56 shows an Operation Example in Reset Synchronous PWM Mode.

See Figure 8-54 Operation Example in PWM Function (Duty Cycle 0%, Duty Cycle 100%) for an operation example in PWM Mode with duty cycle 0% and duty cycle 100%.

Note When bits TRDBFC0, TRDBFD0, TRDBFC1, and TRDBFD1 in the TRDMR register are set to 1 (buffer register).

9.3.13 Month count register (MONTH)

The MONTH register is an 8-bit register that takes a value of 1 to 12 (decimal) and indicates the count value of months. It counts up when the day counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 operating clocks (fRTC) later. Even if the day count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 12 to this register in BCD code.

Set the MONTH register by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 01H.

Figure 9-14. Format of Month Count Register (MONTH)

Address: FFF	97H After re	eset: 01H	R/W					
Symbol	7	6	5	4	3	2	1	0
MONTH	0	0	0	MONTH10	MONTH8	MONTH4	MONTH2	MONTH1

Caution When it reads or writes from/to the register while the counter is in operation (RTCE = 1), see 9.4.3 Reading/writing real-time clock and follow the described procedures.

9.3.14 Year count register (YEAR)

The YEAR register is an 8-bit register that takes a value of 0 to 99 (decimal) and indicates the count value of years. It counts up when the month count register (MONTH) overflows.

Values 00, 04, 08, ..., 92, and 96 indicate a leap year.

When data is written to this register, it is written to a buffer and then to the counter up to 2 operating clocks (fRTC) later. Even if the MONTH register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 99 to this register in BCD code.

Set the YEAR register by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 9-15. Format of Year Count Register (YEAR)

Symbol 7 6 5 4 3 2 1 0 YEAR YEAR80 YEAR40 YEAR20 YEAR10 YEAR8 YEAR4 YEAR2 YEAR10	Address: FFF	98H After re	eset: 00H R/	W					
YEAR YEAR80 YEAR40 YEAR20 YEAR10 YEAR8 YEAR4 YEAR2 YEAR1	Symbol	7	6	5	4	3	2	1	0
	YEAR	YEAR80	YEAR40	YEAR20	YEAR10	YEAR8	YEAR4	YEAR2	YEAR1

Caution When it reads or writes from/to the register while the counter is in operation (RTCE = 1), see 9.4.3 Reading/writing real-time clock and follow the described procedures.

(1) Register setting

Figure 15-54. Example of Contents of Registers for Master Transmission/Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21) (1/2)

RENESAS

Figure 15-153. Flowchart of Slave Transmission/Reception (in Single- Transmission/Reception Mode)

- Cautions 1. Be sure to set transmit data to the SDRpL register before the clock from the master is started.
 - m: Unit number (m = 0, 1), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01, 10, 11), mn = 00, 01, 10, 11

Address	Special Function Register (SFR) Name	Sym	lbol	R/W	A	ccess Siz	e	After
					1 bit	8 bits	16 bits	Reset
F0444H	CAN receive rule entry register 13CL ^{Note 1}	GAFLPL13L	GAFLPL13	R/W		\checkmark	\checkmark	0000H
F0445H		GAFLPL13H			_	\checkmark		
F0444H	CAN receive buffer register 10BL ^{Note 2}	RMTS10L	RMTS10	R		\checkmark	\checkmark	0000H
F0445H		RMTS10H				\checkmark		
F0446H	CAN receive rule entry register 13CHNote 1	GAFLPH13L	GAFLPH13	R/W	_	\checkmark	\checkmark	0000H
F0447H		GAFLPH13H				\checkmark		
F0446H	CAN receive buffer register 10BHNote 2	RMPTR10L	RMPTR10	R		\checkmark	\checkmark	0000H
F0447H		RMPTR10H			_	\checkmark		
F0448H	CAN receive rule entry register 14AL ^{Note 1}	GAFLIDL14L	GAFLIDL14	R/W		\checkmark	\checkmark	0000H
F0449H		GAFLIDL14H				\checkmark		
F0448H	CAN receive buffer register 10CLNote 2	RMDF010L	RMDF010	R	_	\checkmark	\checkmark	0000H
F0449H		RMDF010H				\checkmark		
F044AH	CAN receive rule entry register 14AH ^{Note 1}	GAFLIDH14L	GAFLIDH14	R/W	_	\checkmark	\checkmark	0000H
F044BH		GAFLIDH14H			_	\checkmark		
F044AH	CAN receive buffer register 10CHNote 2	RMDF110L	RMDF110	R		\checkmark	\checkmark	0000H
F044BH		RMDF110H				\checkmark		
F044CH	CAN receive rule entry register 14BL ^{Note 1}	GAFLML14L	GAFLML14	R/W		\checkmark	\checkmark	0000H
F044DH		GAFLML14H				\checkmark		
F044CH	CAN receive buffer register 10DL ^{Note 2}	RMDF210L	RMDF210	R		\checkmark	\checkmark	0000H
F044DH		RMDF210H			_	\checkmark		
F044EH	CAN receive rule entry register 14BHNote 1	GAFLMH14L	GAFLMH14	R/W		\checkmark	\checkmark	0000H
F044FH		GAFLMH14H				\checkmark		
F044EH	CAN receive buffer register 10DHNote 2	RMDF310L	RMDF310	R		\checkmark	\checkmark	0000H
F044FH		RMDF310H				\checkmark		
F0450H	CAN receive rule entry register 14CL ^{Note 1}	GAFLPL14L	GAFLPL14	R/W	_	\checkmark	\checkmark	0000H
F0451H		GAFLPL14H				\checkmark		
F0450H	CAN receive buffer register 11AL ^{Note 2}	RMIDL11L	RMIDL11	R		\checkmark	\checkmark	0000H
F0451H		RMIDL11H				\checkmark		
F0452H	CAN receive rule entry register 14CHNote 1	GAFLPH14L	GAFLPH14	R/W		\checkmark	\checkmark	0000H
F0453H		GAFLPH14H				\checkmark		
F0452H	CAN receive buffer register 11AH ^{Note 2}	RMIDH11L	RMIDH11	R	_	\checkmark	\checkmark	0000H
F0453H		RMIDH11H				\checkmark		
F0454H	CAN receive rule entry register 15AL ^{Note 1}	GAFLIDL15L	GAFLIDL15	R/W		\checkmark	\checkmark	0000H
F0455H		GAFLIDL15H			_	\checkmark		
F0454H	CAN receive buffer register 11BL ^{Note 2}	RMTS11L	RMTS11	R		\checkmark	\checkmark	0000H
F0455H		RMTS11H				\checkmark		
F0456H	CAN receive rule entry register 15AH ^{Note 1}	GAFLIDH15L	GAFLIDH15	R/W	_	\checkmark	\checkmark	0000H
F0457H		GAFLIDH15H			_	\checkmark		
F0456H	CAN receive buffer register 11BH ^{Note 2}	RMPTR11L	RMPTR11	R	_	\checkmark	\checkmark	0000H
F0457H	-	RMPTR11H			_	\checkmark		

 Table 18-3. List of CAN Module Registers (12/37)

Notes 1. These registers are allocated to RAM window 0 for the CAN module (receive rules and CAN RAM test register). When setting these registers, set the RPAGE bit in the GRWCR register to 0.

2. These registers are allocated to RAM window 1 for the CAN module (receive buffer, receive FIFO buffer, transmit/receive FIFO buffer, transmit buffer, and transmit history data). When setting these registers, set the RPAGE bit in the GRWCR register to 1.

(7) The message is stored in the transmit/receive FIFO buffer set in receive mode, when the message has passed through the DLC filter process if the CFE bit is set to 1 (transmit/receive FIFO buffers are used) and the CFDC[2:0] bits are set to B'001 or more.

The CFMC[5:0] value is incremented to H'01. When the CFIM bit is set to 1 (an interrupt occurs each time a message has been received), the CFRXIF flag is set to 1 (a transmit/receive FIFO receive interrupt request is present).

The message is stored in the receive FIFO buffer, if the RFE bit in the RFCCm register is set to 1 (receive FIFO buffers are used) and RFDC[2:0] bits in the RFCCm register are set to B'001 or more.

The RFMC[5:0] value in the RFSTSm register is incremented to H'01. When the RFIM bit in the RFCCm register is set to 1 (an interrupt occurs each time a message has been received), the RFIF flag in the RFSTSm register is set to 1 (a receive FIFO interrupt request is present).

Various statuses					Value received using the control field				
equa	lockf	eqpa	IEBB0STXE	IEBB0SRXE	0H	3H, 7H	4H, 5H	6H	AH, BH, EH, FH
1	0	0	Any	Any	Set	Not set	Not set	Set	Not set
1	0	1	Any	Any	Set	Not set	Not set	Set	Not set
1	1	0	Any	Any	Set	Not set	Set	Not set	Not set
1	1	1	Any	Any	Set	Not set	Set	Set	Not set

Table 19-11. Conditions for setting the status transmission request flag (slave)

Note equa: Unit match (during individual communication, IEBB0UAR register match, during broadcast communication: group match, FFF match)

lockf: Whether there is a lock eqpa: Lock master match IEBB0STXE: Slave transmission enable flag (IEBB0BCR register bit 4) IEBB0SRXE: Slave reception enable flag (IEBB0BCR register bit 3)

If an IEBus vector interrupt (Status transmission request) occurs in the single mode, read the IEBB0CDR register to check the received control data contents, and then write the required slave status information to the IEBB0DR register. The received control data and data written to the IEBB0DR register are shown below.

Table 19-12. Slave request conditions (conditions for setting the IEBB0SRQF bit)

Received control data	Function	Data written to the IEBB0DR register
0H, 6H	Slave status transmission	Value read from the IEBB0SSR register
4H	Transmission of the lower 8 bits of the lock address	Lower 8 bits of the IEBB0PAR register
5H	Transmission of the higher 8 bits of the lock address	Higher 8 bits of the IEBB0PAR register

Caution After an IEBus vector interrupt (status transmission request) occurs, be sure to write the appropriate data to the IEBB0DR register before the completion of the message length field. If writing is not in time, do not transmit IEBB0DR register data and cause an underrun error.

• IEBB0ETRF: Bit 3

A flag that indicates whether communication ends after the number of bytes set in the message length field have been transferred.

Set/clear condition

- Set: When the unit is the communication target (during communication with the master unit or slave unit) and the value of the IEBB0SCR register becomes 0 at the end of the data field acknowledge period.
- Clear: The flag is cleared (to 0) by hardware when an IEBus vector interrupt (Start request), IEBus vector interrupt (Status transmission request), IEBus vector interrupt (Frame end with no IEBus vector interrupt (Communication end), IEBus data interrupt (Transmission data write request), or IEBus data interrupt (Reception data read request) occurs.

If the communication completion flag is seto to 1, an IEBus based on the occurrence of the IEBus vector interrupt.

(3) Interrupt servicing examples

The interrupt servicing examples of master reception is shown below.

• IEBus vector interruput (Start request) processing flow example

The IEBus vector interrupt (Start request) processing flow example is shown below.

Figure 19-37. IEBus vector interrupt (Start request) processing flow example (Master reception)

• IEBus vector interruput (Communication end) processing flow example

The IEBus vector interrupt (Communication end) processing flow example is shown below.

Figure 19-38. IEBus vector interrupt (Communication end) processing flow example (Master reception)

• IEBus data interruput (Reception data read request) processing flow example

The IEBus data interrupt (Reception data read request) processing flow example is shown below.

Figure 19-39. IEBus data interrupt (Reception data read request) processing flow example (Master reception)

19.5.4 Slave transmission

The unit transfers data and commands to the master unit as a slave.

IEBus data interrupts (Transmission data write request) are used to write transmission data to the IEBB0DR register for each one-byte transfer.

(1) Register settings

After specifying the initial settings in Table 19-17, Initial setup, set up the registers below before starting communication.

Table 19-20.	Standard initial processing
--------------	-----------------------------

Register name	Function	Example
IEBB0DLR	Message length (other than during slave status transmission)	02H
IEBB0DR	Data (1st byte of data)	11H
IEBB0BCR	Communication startup processing	90H

Caution When starting slave transmission, information such as the value to be set to the message length register (IEBB0DLR) and which data is to be returned (the value to be set to the IEBB0DR register) must be assigned in advance by the master, such as during separate communication.

(2) Interrupt occurrence timing

Figure 19-40, Figure 19-41 and Figure 19-42 show the interrupt occurrence timing of slave transmission.

• When the control bit 3H or 7H is received

Figure 19-40. Interrupt occurrence timing (Slave transmission) when the control bit 3H or 7H is received

21.3 Operation

The path for using an event signal generated by a peripheral function as an interrupt request to the interrupt control circuit is independent from the path for using it as an ELC event. Therefore, each event signal can be used as an event signal for operation of an event-receiving peripheral function, regardless of interrupt control.

In addition, event link operation can be performed without being influenced by the presence or absence of a CPU clock supply. However, the operating clock of a peripheral function needs to be supplied and be in an operational state.

Figure 21-3 shows the relationship between interrupt handling and ELC. The figure show an example of an interrupt request status flag and a peripheral function possessing the enable bits that control enabling/disabling of such interrupts.

A peripheral function which receives an event from the ELC will perform the operation corresponding to the eventreceiving peripheral function after reception of an event (see Table 21-3 Correspondence Between Values Set to ELSELRn (n = 00 to 25) Registers and Operation of Link Destination Peripheral Functions at Reception).

22.3.1 Interrupt request flag registers (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, IF3L, IF3H)

The interrupt request flags are set to 1 when the corresponding interrupt request is generated or an instruction is executed. They are cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or upon reset signal generation.

When an interrupt is acknowledged, the interrupt request flag is automatically cleared and then the interrupt routine is entered.

The IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, IF3L and IF3H registers can be set by a 1-bit or 8-bit memory manipulation instruction. When the IF0L and IF0H registers, the IF1L and IF1H registers, and the IF2L and IF2H and the IF3L and IF3H registers are combined to form 16-bit registers IF0, IF1, IF2 and IF3 they can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H.

Remark If an instruction that writes data to this register is executed, the number of instruction execution clocks increases by 2 clocks.

Figure 22-2. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, IF3L, IF3H) (1/2)

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IFOL	PIF5 CMPIF0	PIF4 SPMIF	PIF3	PIF2	PIF1	PIF0	LVIIF	WDTIIF

Address: FFFE1H After reset: 00H R/W

Address: FFFE0H After reset: 00H R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF0H	LIN0TRMIF	RAMIF	TRJIIF0	TRDIF1	TRDIF0	SRIF0	STIF0	CLMIF
						CSIIF01	CSIIF00	PIF13
						IICIF01	IICIF00	

Address: FFFE2H After reset: 00H R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF1L	TMIF03	TMIF02	TMIF01	TMIF00	PIF8	IICAIF0	LIN0STAIF	LIN0RVCIF
	LIN2STAIF	LIN2RVCIF	LIN2TRMIF		RTCIF		LIN0IF	
	LIN2IF							

Address: FFFE3H After reset: 00H R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF1H	TMIF04	SRIF1	STIF1	PIF10	PIF9	PIF7	PIF6	ADIF
	STIF2	CSIIF11	CSIIF10	TMIF03H	TMIF01H	TMIF13H	TMIF11H	
001172		IICIF11	IICIF10					
	CSIIF20		IEBBTDIF					

Address: FFFD0H After reset: 00H R/W

Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
IF2L	CAN0CFRIF	CAN0WUPIF	CAN0ERRIF	KRIF	PIF11	PIF15	TMIF06	TMIF05
					LIN0WUPIF	TMIF07	SREIF2	SRIF2
								CSIIF21

(3) Bit error detection register (ECCER)

Figure 28-10. Format of Bit Error Detection Register (ECCER)

Address: I	F0203H After	reset: 00H R	z/W								
Symbol	7	6	5	4	3	2	1	0			
ECCER	-	-	-	-	-	-	-	DBERR			
	DBERR		Bit error detection flag								
	0	A 1-bit error detected.									
	1	A 2-bit error de	etected.								

Cautions 1. The DBERR bit is cleared to 0 by writing 0.

- 2. If setting to 1 due to bit error detection and clearing to 0 by the CPU occur simultaneously, setting to 1 due to bit error detection has a priority.
- 3. If a bit error detection interrupt request (INTRAM) is not generated, the DBERR value is invalid.

(4) ECC test protect register (ECCTPR)

This register is used to prevent accidentally changing the setting of the ECCTMDR register to trigger entry to the ECC test mode.

Writing a value other than 07H prevents changes to the value of the ECCTMDR register

Figure 28-11. Format of ECC Test Protect Register (ECCTPR)

Address: F	0204H	After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
ECCTPR	-	-	-	-	-	TPR2	TPR1	TPR0

TPR2 to TPR0	ECC test protect bits
Other than 00000111	Access to the ECCTMDR register is disabled.
00000111	Access to the ECCTMDR register is enabled.

The voltage range in which to write, erase, or verify data in flash memory programming mode is shown in Table 31-5.

Table 31-5.	Voltages at	Which Data	Can Be	Written,	Erased, or	Verified
-------------	-------------	------------	--------	----------	------------	----------

Voltages at which data can be written, erased, or verified	Operating frequency
$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	1 MHz to 32 MHz

Remark For details about communication commands, see 31.4.4 Communication commands.

31.4.3 Selecting communication mode

Communications modes of the RL78/F15 are as follows.

Communication		Pins Used			
Mode	Port	Speed Note 2	Frequency	Multiply Rate	
1-line mode (when flash memory programmer or an external device is used)	UART	115200 bps, 250000 bps, 500000 bps, 1 Mbps	_	_	TOOL0
UART0 (when external device is used)	UART	115200 bps, 250000 bps, 500000 bps, 1 Mbps	_	_	TOOLTXD, TOOLRXD

Table 31-6.	Communication Modes	

- Notes 1. Selection items for Standard settings on GUI of the flash memory programmer.
 - **2.** Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.

35.2 Oscillator Characteristics

35.2.1 Main System Clock Oscillator Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator/ Crystal resonator	Vss X1 X2 Rd C1 C2 M	X1 clock oscillation frequency (fx)	$2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$	1.0		20.0	MHz

Cautions 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. Customers are requested to consult the resonator manufacturer to select an appropriate resonator and to determine the proper oscillation constant. Customers are also requested to adequately evaluate the oscillation on their system. Determine the X1 clock oscillation stabilization time using the oscillation stabilization time of the oscillation stabilization time counter status register (OSTC) and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

