

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, CSI, I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	130
Program Memory Size	192КВ (192К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 31x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f113thlfb-v5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.3.12 Timer output enable register m (TOEm)	440
6.3.13 Timer output register m (TOm)	441
6.3.14 Timer output level register m (TOLm)	442
6.3.15 Timer output mode register m (TOMm)	443
6.3.16 Noise filter enable registers 1, 2, 3 (NFEN1, NFEN2, NFEN3)	444
6.3.17 Port mode registers 0, 1, 3, 4, 5, 6, 7, 11, 12, 14 (PM0, PM1, PM3, PM4, PM5, PM6, PM7,	PM11,
PM12, PM14)	448
6.3.18 PWM output delay control register 1 (PWMDLY1)	451
6.3.19 PWM output delay control register 2 (PWMDLY2)	452
6.3.20 PWM output delay control register 3 (PWMDLY3: 144-pin only)	453
6.3.21 Unit select register (UTSEL: 144-pin only)	454
6.4 Basic Rules of Timer Array Unit	455
6.4.1 Basic rules of simultaneous channel operation function	455
6.4.2 Basic rules of 8-bit timer operation function (unit0, 1: channels 1 and 3 only)	457
6.5 Operation Timing of Counter	458
6.5.1 Count clock (fTCLK)	458
6.5.2 Start timing of counter	460
6.5.3 Operation of counter	461
6.6 Channel Output (TOmn pin) Control	466
6.6.1 TOmn pin output circuit configuration	466
6.6.2 TOmn Pin Output Setting	467
6.6.3 Cautions on Channel Output Operation	468
6.6.4 Collective manipulation of TOmn bit	473
6.6.5 Timer Interrupt and TOmn Pin Output at Operation Start	474
6.7 Independent Channel Operation Function of Timer Array Unit	475
6.7.1 Operation as interval timer/square wave output	475
6.7.2 Operation as external event counter	481
6.7.3 Operation as frequency divider	486
6.7.4 Operation as input pulse interval measurement	492
6.7.5 Operation as input signal high-/low-level width measurement	497
6.7.6 Operation as delay counter	502
6.8 Simultaneous Channel Operation Function of Timer Array Unit	507
6.8.1 Operation as one-shot pulse output function	507
6.8.2 Operation as PWM function	515
6.8.3 Operation as multiple PWM output function	522
6.9 Cautions When Using Timer Array Unit	531
6.9.1 Cautions When Using Timer output	531
6.9.2 Caution for register access	531
CHAPTER 7 TIMER RJ	532
7.1 Overview	532

(j) STOPST

This is a STOP status output pin.

(k) CTXD1

This is a serial data output pin of the CAN.

(i) CRXD1

This is a serial data intput pin of the CAN.

2.2.5 P40 to P47 (Port 4)

P40 to P47 function as an I/O port. These pins also function as data I/O for a flash memory programmer/debugger, timer I/O, comparator output, external interrupt request input, SNOOZE status output, and LIN serial data I/O. P42 and P43 are provided only in the 144-pin, 100-pin, 80-pin, and 64-pin products. P44 to P47 are provided only in the 144-pin, 100-pin, and 80-pin products.

Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 4 (PU4).

For the P43 pin, the input threshold level can be specified using the port input threshold control register 4 (PITHL4). The following operation modes can be specified in 1-bit units.

(1) Port mode

P40 to P47 function as an I/O port. These pins can be set to input or output port in 1-bit units using port mode register 4 (PM4).

(2) Control mode

P40 to P47 function as data I/O for a flash memory programmer/debugger, timer I/O, comparator output, external interrupt request input, SNOOZE status output, and LIN serial data I/O.

(a) TOOL0

This is a data I/O pin for a flash memory programmer/debugger. Be sure to pull up this pin externally when on-chip debugging is enabled (pulling it down is prohibited).

(b) TI07, TI10, TI12

These are pins for inputting an external count clock/capture trigger to 16-bit timers.

(c) TO07, TO10, TO12

These are timer output pins of 16-bit timers.

(d) TRJIO0

This is a timer I/O pin of timer RJ.

(e) VCOUT0

This is a comparator output pin.

(f) INTP13

This is an external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(g) SNZOUT2

This is a SNOOZE status output pin.

Pin Name		PM7x	PIM7x	POM7x	PMC7x	PITHL7x	Alternate Function	Remark
Name	I/O						Setting	
P75	Input	1	-	-	-	0	×	CMOS input
								(Schmitt1 input)
						1	×	CMOS input
								(Schmitt3 input)
	Output	0	-	-	-	×	×	
P76	Input	1	-	-	-	0	×	CMOS input
								(Schmitt1 input)
						1	×	CMOS input
								(Schmitt3 input)
	Output	0	_	_	_	×	$\overline{(\text{SCK10 output} = 1 \text{ Note 4})}$	
P77	Input	1	-	-	-	0	×	CMOS input
								(Schmitt1 input)
						1	×	CMOS input
								(Schmitt3 input)
	Output	0	_	_	_	×	×	

Table 4-12. Settings of Registers When Using Port 7 (2/2)

- Notes 1. When a pin sharing the serial array unit function is to be used as a general-purpose port pin, the SOmn bit of the serial output register m (SOm), the SOEmn bit of the serial output enable register m (SOEm), and the SEmn bit of the serial channel enable status register m (SEm) corresponding to the target unit and channel must have the same setting as its initial value (m = 0, 1, 2, n = 0, 1).
 - 2. When a pin sharing a timer output function of the timer array unit is to be used as a general-purpose port pin, the TOmn bit of the timer output register m (TOm) and the TOEmn bit of the timer output enable register m (TOEm) corresponding to the target unit and channel must have the same setting as in the initial state (m = 0, 1, 2, n = 0 to 7).
 - **3.** When a pin sharing the SNOOZE status output function is to be used as a general-purpose port pin, the OUTEN0 to OUTEN7 bits of the SNOOZE status output control registers 0, 1, 2, 3 (PSNZCNT0, 1, 2, 3) must have the same setting as its initial value.
 - 4. When a pin sharing the serial array unit function is to be used as a general-purpose port pin, the CKOmn bit of the serial output register m (SOm), the SOEmn bit of the serial output enable register m (SOEm), and the SEmn bit of the serial channel enable status register m (SEm) corresponding to the target unit and channel must have the same setting as its initial value (m = 0, 1, 2, n = 0, 1).
 - 5. When a pin sharing the serial data output function of the CAN is to be used as a general-purpose port pin, operation of the corresponding CAN must be stopped.
 - 6. Functions in parentheses can be assigned via settings in the peripheral I/O redirection register 4 (PIOR4).

Remark	×:	Don't care
	PM7x:	Port mode register 7
	PIM7x:	Port input mode register 7
	POM7x:	Port output mode register 7
	PMC7x:	Port mode control register 7
	PITHL7x:	Port input threshold control register 7

4.3.11 Peripheral I/O redirection register 2 (PIOR2)

This register is used to specify whether to enable or disable the peripheral I/O redirect function.

PIOR2 enables or disables redirection of the timer array unit functions; that is, it specifies which I/O port is assigned to each input pin of timer array unit 1.

This register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 4-102. Format of Peripheral I/O Redirection Register 2 (PIOR2)

Address:	F0018H	After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PIOR2	PIOR27	PIOR26	PIOR25	PIOR24	PIOR23	PIOR22	PIOR21	PIOR20

Dit	Function	144	nin	100	100 pip		nin
ЫІ	Function	144	-pin	100	-pin	0-06	·pin
		Setting	g value	Setting	g value	Setting	g value
		0	1	0	1	0	1
PIOR27	TI17	P71	P57	P71	P57	P71	P57
PIOR26	TI16	P32	P65	P32	P65	P32	P65
PIOR25	TI15	P70	P56	P70	P56	P70	P56
PIOR24	TI14	P31	P64	P31	P64	P31	P64
PIOR23	TI13	P10	P55	P10	P55	P10	P55
PIOR22	TI12	P11	P46	P11	P46	P11	P46
PIOR21	TI11	P12	P54	P12	P54	P12	P54
PIOR20	TI10	P41	P45	P41	P45	P41	P45

Caution The 64-, and 48-pin products do not have the PIOR2 register.

Address: FF	FA3H Afte	r reset: 07H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0
	OSTS2	OSTS1	OSTS0		Oscillati	ion stabilization tin	ne selection	
						fx = 10 MHz	fx =	20 MHz
	0	0	0	2 ⁸ /fx		25.6 <i>µ</i> s	12.8 <i>µ</i> s	
	0	0	1	2 ⁹ /fx		51.2 <i>μ</i> s	25.6 <i>μ</i> s	
	0	1	0	2 ¹⁰ /fx		102.4 <i>μ</i> s	51.2 <i>μ</i> s	
	0	1	1	2 ¹¹ /fx		204.8 <i>µ</i> s	102.4 <i>μ</i>	S
	1	0	0	2 ¹³ /fx		819.2 <i>μ</i> s	409.6 <i>µ</i>	S
	1	0	1	2 ¹⁵ /fx		3.27 ms	1.63 ms	
	1	1	0	2 ¹⁷ /fx		13.10 ms	6.55 ms	
	1	1	1	2 ¹⁸ /fx		26.21 ms	13.10 m	IS

Figure 5-7. Format of Oscillation Stabilization Time Select Register (OSTS)

Cautions 1. To set the STOP mode when the X1 clock is used as the CPU clock, set the OSTS register before executing the STOP instruction.

- 2. Change the setting of the OSTS register before setting the MSTOP bit of the clock operation status control register (CSC) to 0.
- 3. Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.
- 4. The oscillation stabilization time counter counts up to the oscillation stabilization time set by the OSTS register.

In the following cases, set the oscillation stabilization time of the OSTS register to the value equal to or greater than the count value which is to be checked by the OSTC register after the oscillation starts.

- If the X1 clock starts oscillation while the high-speed on-chip oscillator clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the high-speed on-chip oscillator clock is being used as the CPU clock with the X1 clock oscillating. (Note, therefore, that only the status up to the oscillation stabilization time set by the OSTS register is set to the OSTC register after the STOP mode is released.)
- 5. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

6.3.19 PWM output delay control register 2 (PWMDLY2)

This register controls output delay of PWM output signal output from the TO1n pin. Set the PWMDLY2 register by a 16-bit memory manipulation instruction. Reset signal generation clears this register to 0000H.

Address: F022DH After reset: 00H R/W								
Symbol	15	14	13	12	11	10	9	8
PWMDLY2	TO171	TO170	TO161	TO160	TO151	TO150	TO141	TO140
Address: F022CH After reset: 00H R/W								
PWMDLY2	TO131	TO130	TO121	TO120	TO111	TO110	0	0
	TO1n1	TO1n0		PWM out	put delay contro	ol of timer array	unit 1 TO1n	
	0	0	No dolov					

Į	TOTINT	TOTINU	PWW output delay control of timer array unit 1101n				
	0	0	lo delay				
	0	1	Delayed by one cycle of the CPU/peripheral hardware clock (fcLk).				
	1	0	Delayed by two cycles of the CPU/peripheral hardware clock (fcLK).				
	1	1	Delayed by three cycles of the CPU/peripheral hardware clock (fCLK).				

Remark n: Channel number (n = 1 to 7)

- Cautions 1. Set this register before outputting a PWM output signal (do not change the setting during operation).
 - 2. Set this register with a 16-bit memory manipulation instruction. Do not set this register with a 1bit or 8-bit memory manipulation instruction.
 - 3. If this register is not used for PWM output, it should be cleared to 0.
 - 4. When setting this register after the PWM output is stopped, wait for four cycles of the CPU/peripheral hardware clock (fcLk) before the setting.
 - 5. Even if this register is set for a delay, this doesn't affect the operation of other pin functions multiplexed on the same pin as the TO1n pin function (n = 1 to 7).

	Software Operation	Hardware Status
TAU stop	To hold the TOmn pin output level Clears the TOmn bit to 0 after the value to be held is set to the port register. When holding the TOmn pin output level is not necessary Setting not required	• The TOmn pin output level is held by port function.
	The TAUmEN bit of the PER0, PER1 register is cleared → to 0.	Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TOmn bit is cleared to 0 and the TOmn pin is set to port mode.)

Figure 6-48 Operation Procedure of Interval Timer/Square Wave Output Function (2/2)

Remark 144-pin products m: Unit number (m = 0 to 2), n: Channel number (n = 0 to 7) 100-pin, 80-pin, 64-pin, and 48-pin products m: Unit number (m = 0 and 1), n: Channel number (n = 0 to 7)

6.8.3 Operation as multiple PWM output function

By extending the PWM function and using multiple slave channels, many PWM waveforms with different duty values can be output.

For example, when using two slave channels, the period and duty factor of an output pulse can be calculated by the following expressions.

Pulse period = {Set value of TDRmn (master) + 1} × Count clock period Duty factor 1 [%] = {Set value of TDRmp (slave 1)}/{Set value of TDRmn (master) + 1} × 100 Duty factor 2 [%] = {Set value of TDRmq (slave 2)}/{Set value of TDRmn (master) + 1} × 100

Remark Although the duty factor exceeds 100% if the set value of TDRmp (slave 1) > {set value of TDRmn (master) + 1} or if the {set value of TDRmq (slave 2)} > {set value of TDRmn (master) + 1}, it is summarized into 100% output.

Timer count register mn (TCRmn) of the master channel operates in the interval timer mode and counts the periods.

The TCRmp register of the slave channel 1 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmp pin. The TCRmp register loads the value of timer data register mp (TDRmp), using INTTMmn of the master channel as a start trigger, and starts counting down. When TCRmp = 0000H, TCRmp outputs INTTMmp and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmp = 0000H.

In the same way as the TCRmp register of the slave channel 1, the TCRmq register of the slave channel 2 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmq pin. The TCRmq register loads the value of the TDRmq register, using INTTMmn of the master channel as a start trigger, and starts counting down. When TCRmq = 0000H, the TCRmq register outputs INTTMmq and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmq becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmq = 0000H.

When channel 0 is used as the master channel as above, up to three types of PWM signals can be output at the same time.

- Caution To rewrite both timer data register mn (TDRmn) of the master channel and the TDRmp register of the slave channel 1, write access is necessary at least twice. Since the values of the TDRmn and TDRmp registers are loaded to the TCRmn and TCRmp registers after INTTMmn is generated from the master channel, if rewriting is performed separately before and after generation of INTTMmn from the master channel, the TOmp pin cannot output the expected waveform. To rewrite both the TDRmn register of the master and the TDRmp register of the slave, be sure to rewrite both the registers immediately after INTTMmn is generated from the master channel (This applies also to the TDRmq register of the slave channel 2).
- Remark 144-pin products m: Unit number (m = 0 to 2), n: Master Channel number (n = 0, 2, 4) 100-pin, 80-pin, 64-pin, and 48-pin products m: Unit number (m = 0 and 1), n: Master Channel number (n = 0, 2, 4) p: Slave channel number 1, q: Slave channel number 2

n (Where p and q are integers greater than n)

4. The operation of the watchdog timer in the HALT, STOP, and SNOOZE modes differs as follows depending on the set value of bit 0 (WDSTBYON) and bit 4 (WDTON) of the option byte (000C0H).

	WDTON = 1 and WDSTBYON = 0	WDTON = 1 and WDSTBYON = 1
In HALT mode	Watchdog timer operation stops.	Watchdog timer operation continues.
In STOP mode		
In SNOOZE mode		

If WDSTBYON = 0, the watchdog timer resumes counting after the HALT, STOP, or SNOOZE modes is released. At this time, the counter is cleared to 0 and counting starts.

When operating with the X1 oscillation clock after releasing the STOP mode, the CPU starts operating after the oscillation stabilization time has elapsed.

Therefore, if the period between the STOP mode release and the watchdog timer overflow is short, an overflow occurs during the oscillation stabilization time, causing a reset.

Consequently, set the overflow time in consideration of the oscillation stabilization time when operating with the X1 oscillation clock and when the watchdog timer counter is to be cleared after the STOP mode release by an interval interrupt.

11.4.2 Setting overflow time of watchdog timer

Set the overflow time of the watchdog timer by using bits 3 to 1 (WDCS2 to WDCS0) of the option byte (000C0H).

If an overflow occurs, an internal reset signal is generated. The present count is cleared and the watchdog timer starts counting again by writing "ACH" to the watchdog timer enable register (WDTE) during the window open period before the overflow time.

The following overflow times can be set.

WDCS2	WDCS1	WDCS0	Overflow Time of Watchdog Timer
			(fwdt = 17.25 kHz (MAX.))
0	0	0	2 ⁶ /fwdt (3.71 ms)
0	0	1	2 ⁷ /fwdt (7.42 ms)
0	1	0	2 ⁸ /fwdt (14.84 ms)
0	1	1	2 ⁹ /fwdt (29.68 ms)
1	0	0	2 ¹¹ /fwdt (118.72 ms)
1	0	1	2 ¹³ /fwdt ^{Note} (474.89 ms)
1	1	0	2 ¹⁴ /fwdt ^{Note} (949.79 ms)
1	1	1	2 ¹⁶ /f _{WDT} ^{Note} (3799.18 ms)

Table 11-3. Setting of Overflow Time of Watchdog Timer

Note When the interval interrupt of watchdog timer is used, do not set the overflow time to 2¹³/fwDT, 2¹⁴/fwDT or 2¹⁶/fwDT.

Remark fwpt: WDT-dedicated low-speed on-chip oscillator clock frequency

12.3.8 Conversion result comparison upper limit setting register (ADUL)

This register is used to specify the setting for checking the upper limit of the A/D conversion results.

The A/D conversion results and ADUL register value are compared, and interrupt signal (INTAD) generation is controlled in the range specified for the ADRCK bit of A/D converter mode register 2 (ADM2) (shown in **Figure 12-8**).

The ADUL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets this register to FFH.

Figure 12-12. Format of Conversion Result Comparison Upper Limit Setting Register (ADUL)

Address: F0011H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
ADUL	ADUL7	ADUL6	ADUL5	ADUL4	ADUL3	ADUL2	ADUL1	ADUL0

Cautions 1. When A/D conversion with 10-bit resolution is selected, the higher eight bits of the 10-bit A/D conversion result register (ADCR) are compared with the value in the ADUL register.

- 2. Writing new values to the ADUL and ADLL registers is prohibited while conversion is enabled. Write new values to these registers while conversion is stopped (ADCE = 0).
- 3. The setting of the ADUL registers must be greater than that of the ADLL register.

12.3.9 Conversion result comparison lower limit setting register (ADLL)

This register is used to specify the setting for checking the lower limit of the A/D conversion results. The A/D conversion results and ADLL register value are compared, and interrupt signal (INTAD) generation is controlled in the range specified for the ADRCK bit of A/D converter mode register 2 (ADM2) (shown in **Figure 12-8**). The ADLL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 12-13. Format of Conversion Result Comparison Lower Limit Setting Register (ADLL)

Address: F0012H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADLL	ADLL7	ADLL6	ADLL5	ADLL4	ADLL3	ADLL2	ADLL1	ADLL0

- Cautions 1. When A/D conversion with 10-bit resolution is selected, the higher eight bits of the 10-bit A/D conversion result register (ADCR) are compared with the value in the ADLL register.
 - 2. Writing new values to the ADUL and ADLL registers is prohibited while conversion is enabled. Write new values to these registers while conversion is stopped (ADCE = 0).
 - 3. The setting of the ADUL registers must be greater than that of the ADLL register.

15.5.9 Procedure for processing errors that occurred during 3-wire serial I/O (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21) communication

The procedure for processing errors that occurred during 3-wire serial I/O (CSI00, CSI01, CSI10, CSI11, CSI20, CSI21) communication is described in Figure 15-107.

Software Manipulation	Hardware Status	Remark
Reads serial data register mn (SDRmn)	 The BFFmn bit of the SSRmn register is set to 0 and channel n is enabled to receive data. 	This is to prevent an overrun error if the next reception is completed during error processing.
Reads serial status register mn (SSRmn).		Error type is identified and the read value is used to clear error flag.
Writes 1 to serial flag clear trigger ——— register mn (SIRmn).	Error flag is cleared.	Error can be cleared only during reading, by writing the value read from the SSRmn register to the SIRmn register without modification.

Figure 15-107.	Processing	Procedure in	Case of	Overrun	Error
rigato to tori	riococomig	i i oooaai o iii	0400 0	Overnam	

Remark m: Unit number (m = 0-2), n: Channel number (n = 0, 1), mn = 00, 01, 10, 11, 20, 21

(1) Register setting

Figure 15-110. Example of Contents of Registers for Master Transmission of SPI Function (CSI00, CSI01, CSI10, CSI11) (1/2)

- **Remarks 1.** m: Unit number (m = 0, 1), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01, 10, 11), mn = 00, 01, 10, 11
 - 2. : Setting is fixed in the CSI master transmission mode, : Setting disabled (set to the initial value) 0/1: Set to 0 or 1 depending on the usage of the user

(4) Processing flow (in continuous transmission mode)

Figure 15-140. Timing Chart of Slave Transmission (in Continuous Transmission Mode) (Type 1: DAPmn = 0, CKPmn = 0)

- **Note** If transmit data is written to the SDRmn register while the BFFmn bit of serial status register mn (SSRmn) is 1 (valid data is stored in serial data register mn (SDRmn)), the transmit data is overwritten.
- Caution The MDmn0 bit of serial mode register mn (SMRmn) can be rewritten even during operation. However, rewrite it before transfer of the last bit is started.
- **Remark** m: Unit number (m = 0, 1), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01, 10, 11), mn = 00, 01, 10, 11

Figure 15-180. Flowchart of UART Reception (UART2)

Remark m: Unit number (m = 2), n: Channel number (n = 1), mn = 21, r: Channel number (r = n - 1), q: UART number (q = 2)

UEBDCE bit (expansion bit/data comparison enable bit)

The UEBDCE bit enables or disables comparison between the 8-bit received data excluding the expansion bits and the value of LIDBn register after detection of the expansion bit.

With 0 set, comparison between the received data in the LURDRn register and the LIDBn register value is disabled after detection of the expansion bit value selected by the UEBDL bit as the expansion bit.

With 1 set, comparison between the received data in the LURDRn register and the LIDBn register value is enabled after detection of the expansion bit value selected by the UEBDL bit as the expansion bit.

Set this bit when the OMM0 bit in the LMSTn register is 0 (LIN reset mode).

Do not set this bit to 1 with the UEBE bit set to 0 (expansion bit operation disabled).

Do not set this bit to 1 with the UECD bit set to 1 (expansion bit comparison disabled).

Do not set this bit to 1 when the UART buffer is in use.

Do not set this bit to 1 with the UWC bit in the LUSCn register set to 1 (start of reception from STOP mode enabled).

UTIGTS bit (transmission interrupt generation timing select bit)

The UTIGTS bit sets the generation timing of the transmission interrupt.

With 0 set, the transmission interrupt is generated at the start of transmission.

With 1 set, the transmission interrupt is generated at the completion of transmission.

When transmission from the UART buffer is performed with 0 set, the transmission interrupt is generated only at the start of the transmission of the last data of the data length set with the MDL bits in the LDFCn register.

When transmission from the UART buffer is performed with 1 set, the transmission interrupt is generated only at the completion of the transmission of the last data of the data length set with the MDL bits in the LDFCn register.

UECD bit (expansion bit comparison disable bit)

The UECD bit enables or disables comparison between the received expansion bit and the UEBDL bit value when the UEBE bit is 1 (expansion bit operation is enabled).

With 0 set, comparison between the received expansion bit and the UEBDL bit value is enabled when the expansion bit is received.

With 1 set, comparison between the received expansion bit and the UEBDL bit value is disabled when the expansion bit is received.

Set this bit when the OMM0 bit in the LMSTn register is 0 (LIN reset mode).

Do not set this bit to 1 when the UART buffer is in use.

Do not set this bit to 1 with the UEBDCE bit set to 1 (data comparison after expansion bit detection is enabled).

Address	Special Function Register (SFR) Name	Sym	lool	R/W	А	ccess Siz	e	After
					1 bit	8 bits	16 bits	Reset
F03DAH	CAN receive rule entry register 4CH ^{Note 1}	GAFI PH4I	GAFI PH4	R/W	_	V		0000H
F03DBH		GAFLPH4H			_	V		
F03DAH	CAN receive buffer register 3CHNote 2	RMDF13L	RMDF13	R	_	V		0000H
F03DBH		RMDF13H			_	V		
F03DCH	CAN receive rule entry register 5AL ^{Note 1}	GAFLIDL5L	GAFLIDL5	R/W	_	V		0000H
F03DDH		GAFLIDL5H			_	V		
F03DCH	CAN receive buffer register 3DL Note 2	RMDF23L	RMDF23	R	_	V		0000H
F03DDH		RMDF23H			_	\checkmark		
F03DEH	CAN receive rule entry register 5AHNote 1	GAFLIDH5L	GAFLIDH5	R/W		\checkmark	\checkmark	0000H
F03DFH		GAFLIDH5H				\checkmark		
F03DEH	CAN receive buffer register 3DHNote 2	RMDF33L	RMDF33	R		\checkmark	\checkmark	0000H
F03DFH		RMDF33H				\checkmark		
F03E0H	CAN receive rule entry register 5BL ^{Note 1}	GAFLML5L	GAFLML5	R/W		\checkmark	\checkmark	0000H
F03E1H		GAFLML5H			_	\checkmark		
F03E0H	CAN receive buffer register 4AL ^{Note 2}	RMIDL4L	RMIDL4	R		\checkmark	\checkmark	0000H
F03E1H		RMIDL4H				\checkmark		
F03E2H	CAN receive rule entry register 5BHNote 1	GAFLMH5L	GAFLMH5	R/W		\checkmark	\checkmark	0000H
F03E3H		GAFLMH5H				\checkmark		
F03E2H	CAN receive buffer register 4AH ^{Note 2}	RMIDH4L	RMIDH4	R		\checkmark	\checkmark	0000H
F03E3H		RMIDH4H				\checkmark		
F03E4H	CAN receive rule entry register 5CL ^{Note 1}	GAFLPL5L	GAFLPL5	R/W		\checkmark	\checkmark	0000H
F03E5H		GAFLPL5H			_	\checkmark		
F03E4H	CAN receive buffer register 4BLNote 2	RMTS4L	RMTS4	R	_	\checkmark	\checkmark	0000H
F03E5H	_	RMTS4H			_	\checkmark		
F03E6H	CAN receive rule entry register 5CHNote 1	GAFLPH5L	GAFLPH5	R/W	_	\checkmark	\checkmark	0000H
F03E7H		GAFLPH5H			_	\checkmark		
F03E6H	CAN receive buffer register 4BHNote 2	RMPTR4L	RMPTR4	R		\checkmark	\checkmark	0000H
F03E7H		RMPTR4H				\checkmark		
F03E8H	CAN receive rule entry register 6ALNote 1	GAFLIDL6L	GAFLIDL6	R/W		\checkmark	\checkmark	0000H
F03E9H		GAFLIDL6H				\checkmark		
F03E8H	CAN receive buffer register 4CLNote 2	RMDF04L	RMDF04	R	_	\checkmark	\checkmark	0000H
F03E9H		RMDF04H				\checkmark		
F03EAH	CAN receive rule entry register 6AHNote 1	GAFLIDH6L	GAFLIDH6	R/W		\checkmark	\checkmark	0000H
F03EBH		GAFLIDH6H			_	\checkmark		
F03EAH	CAN receive buffer register 4CHNote 2	RMDF14L	RMDF14	R		\checkmark	\checkmark	0000H
F03EBH		RMDF14H			_	\checkmark		
F03ECH	CAN receive rule entry register 6BL ^{Note 1}	GAFLML6L	GAFLML6	R/W	_	\checkmark	\checkmark	0000H
F03EDH		GAFLML6H				\checkmark		
F03ECH	CAN receive buffer register 4DL ^{Note 2}	RMDF24L	RMDF24	R	_	\checkmark	\checkmark	0000H
F03EDH		RMDF24H			_	\checkmark		
F03EEH	CAN receive rule entry register 6BHNote 1	GAFLMH6L	GAFLMH6	R/W	_	\checkmark	\checkmark	0000H
F03EFH		GAFLMH6H			_	\checkmark		
F03EEH	CAN receive buffer register 4DHNote 2	RMDF34L	RMDF34	R	—	\checkmark	\checkmark	0000H
F03EFH		RMDF34H			_	\checkmark		

Table 18-3.	List of CAN Module Registers (7/37)
-------------	-------------------------------------

Notes 1. These registers are allocated to RAM window 0 for the CAN module (receive rules and CAN RAM test register). When setting these registers, set the RPAGE bit in the GRWCR register to 0.

2. These registers are allocated to RAM window 1 for the CAN module (receive buffer, receive FIFO buffer, transmit/receive FIFO buffer, transmit buffer, and transmit history data). When setting these registers, set the RPAGE bit in the GRWCR register to 1.

Interrupt	Interrupt Request Flag		Interrupt Mask Flag		Priority Specification Flag		c	_			
Source		Register	-	Register		Register	144-pir	100-pir	80-pin	64-pin	48-pin
INTP13	PIF13	IF0H	PMK13	MK0H	PPR013, PPR113	PR00H,			\checkmark	_	-
INTCLM	CLMIF		CLMMK		CLMPR0, CLMPR1	PR10H	\checkmark	\checkmark		\checkmark	\checkmark
INTST0	STIF0		STMK0		STPR00, STPR10				\checkmark	\checkmark	\checkmark
INTCSI00	IICIF00		CSIMK00		CSIPR000, CSIPR100		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
INTIIC00	IICIF00		IICMK00		IICPR000, IICPR100		\checkmark	\checkmark		\checkmark	\checkmark
INTSR0	SRIF0		SRMK0		SRPR00, SRPR10				\checkmark	\checkmark	\checkmark
INTCSI01	CSIIF01		CSIMK01		CSIPR001, CSIPR101		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
INTIIC01	IICIF01		IICMK01		IICPR001, IICPR101		\checkmark	\checkmark		\checkmark	\checkmark
INTTRD0	TRDIF0		TRDMK0		TRDPR00, TRDPR10		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
INTTRD1	TRDIF1		TRDMK1		TRDPR01, TRDPR11		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
INTTRJ0	TRJIF0		TRJMK0		TRJPR00, TRJPR10				\checkmark	\checkmark	\checkmark
INTRAM	RAMIF		RAMMK		RAMPR0, RAMPR1		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
INTLIN0TRM	LIN0TRMIF		LIN0TRMMK		LINOTRMPR0, LINOTRMPR1		\checkmark		\checkmark	\checkmark	\checkmark

Table 22-2. Flags Corresponding to Interrupt Request Sources (2/5)

Cautions 1. If one of the interrupt sources INTST0, INTCSI00, and INTIIC00 is generated, bit 1 of the IF0H register is set to 1. Bit 1 of the MK0H, PR00H, and PR10H registers supports these three interrupt sources.

2. If one of the interrupt sources INTSR0, INTCSI01, and INTIIC01 is generated, bit 2 of the IF0H register is set to 1. Bit 2 of the MK0H, PR00H, and PR10H registers supports these three interrupt sources.

(b) Release by reset signal generation

When the reset signal is generated, STOP mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 24-7. STOP Mode Release by Reset

(1) When high-speed system clock is used as CPU clock

Note For the reset processing time, see CHAPTER 26 POWER-ON-RESET CIRCUIT.

STOP Mode Setting Item		During a period in STOP mode, input of a timer trigger signal for the A/D converter, reception of a data signal for the LIN/UART module in the UART mode, or the generation of an interrupt signal for DTC activation
		When CPU Is Operating on High-speed On-chip Oscillator Clock (f ${\ensuremath{H}}$)
Power-on-rese	et function	Operable
Voltage detection function		
External interrupt		
Key interrupt for	unction	
CRC operation	High-speed CRC	Operation stopped
function	General-purpose CRC	
Illegal-memory a	ccess detection function	
RAM2 bit error	detection function	
RAM guard function		
SFR guard fun	iction	
CPU stack poi	nter monitor function	Operation stopped (operation can continue during vectored interrupt servicing)

Remark Operation stopped: Operation is automatically stopped before switching to the STOP mode.

Operation disabled: Operation is stopped before switching to the STOP mode.

- fin: High-speed on-chip oscillator clock
- fı∟: Low-speed on-chip oscillator clock f∈x: External main system clock

fxT: XT1 clock

X1 clock

fx:

fexs: External subsystem clock

fPLL: PLL clock

fwDT: WDT-dedicated low-speed on-chip oscillator clock

(2) SNOOZE mode status output (SNOOZEST)

This function is used to output the status of the SNOOZE mode (in any mode other than the SNOOZE mode or in the SNOOZE mode) on the specified pin.

This function is executed by f_{SL} (sub/low-speed on-chip oscillator select clock), timer RD0, event link controller (ELC), A/D converter, and ports simultaneously. f_{SL} is used as the count source for the timer RD0. By using the PWM function of the timer mode, the timer RD0 sets a period in the TRDGRA0 register and generates a compare match signal in the TRDGRB0 and TRDGRC0 registers. The compare match signal of the TRDGRB0 register is used as the operation trigger of the A/D converter via the ELC. After receiving this operation trigger, the A/D converter performs A/D conversion in SNOOZE mode. After the compare match signal of the TRDGRC0 register is received, SNOOZE status is output from the SNZOUTn (n = 0 to 7) pin selected by the PSNZCNT0 to PSNZCNT3 registers. TRDIOC0 cannot be output when SNOOZE status is output.

7	6	5	4	3	2	1	0				
1	1	RESOUTB	FRQSEL4	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0				
RESOUTB			RESC	OUTB output fu	nction						
0	Selects P130	Selects P130 as the RESOUT pin									
	• The low leve	 The low level is output during a reset. 									
	• The high lev	The high level is automatically output upon release from the reset state.									
	• The output I	The output latch value has no effect on the output.									
1	Selects P130	Selects P130 as a general port pin (output only)									
	• The low leve	el is output dur	ing a reset.								
	• The output I	atch value is o	utput upon rele	ease from the re	eset state.						
FRQSEL4	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator clock						
1	1	0	0	0	64 MHz						
1	0	0	0	0	48 MHz						
0	1	0	0	0	32 MHz						
0	0	0	0	0	24 MHz						

Figure 30-3. Format of Option Byte (000C2H/020C2H)

 $\label{eq:Address: 000C2H/020C2H^{Note 1} \quad \mbox{After reset: } \hfill (user setting value $^{Note 2}$) \\$

	Other than above	Setting prohibited	
Notes 1.	Set the same value as 000C2H to 020C2H when the boot s replaced by 020C2H.	wap operation is used because 000C	2H is

16 MHz

12 MHz

8 MHz

4 MHz

1 MHz

2. The setting at shipment of the user option byte is FFH.