

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, CSI, I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	130
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 31x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f113thlfb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.2 I/O Pins	533
7.3 Registers	534
7.3.1 Peripheral enable register 1 (PER1)	
7.3.2 Operation speed mode control register (OSMC)	
7.3.3 Clock Select Register (CKSEL)	
7.3.4 Timer RJ Counter Register 0 (TRJ0), Timer RJ Reload Register	
7.3.5 Timer RJ Control Register 0 (TRJCR0)	538
7.3.6 Timer RJ I/O Control Register 0 (TRJIOC0)	
7.3.7 Timer RJ Mode Register 0 (TRJMR0)	
7.3.8 Timer RJ Event Pin Select Register 0 (TRJISR0)	
7.3.9 Port mode registers 1, 4 (PM1, PM4)	
7.4 Operation	
7.4.1 Reload Register and Counter Rewrite Operation	545
7.4.2 Timer Mode	546
7.4.3 Pulse Output Mode	
7.4.4 Event Counter Mode	
7.4.5 Pulse Width Measurement Mode	550
7.4.6 Pulse Period Measurement Mode	551
7.4.7 Coordination with Event Link Controller (ELC)	552
7.4.8 Output Settings for Each Mode	552
7.5 Notes on Timer RJ	553
7.5.1 Count Operation Start and Stop Control	553
7.5.2 Access to Flags (Bits TEDGF and TUNDF in TRJCR0 Register)	553
7.5.3 Access to Counter Register	553
7.5.4 When Changing Mode	553
7.5.5 Procedure for Setting Pins TRJO0 and TRJIO0	554
7.5.6 When Timer RJ is not Used	554
7.5.7 When Timer RJ Operating Clock is Stopped	554
7.5.8 Procedure for Setting STOP Mode (Event Counter Mode)	
7.5.9 Functional Restriction in STOP Mode (Event Counter Mode Only)	555
7.5.10 When Count is Forcibly Stopped by TSTOP Bit	555
7.5.11 Digital Filter	555
7.5.12 When Selecting fIL as Count Source	555
IAPTER 8 TIMER RD	
8.1 Overview	
8.2 Registers	558
8.2.1 Peripheral enable register 1 (PER1)	559
8.2.2 Clock Select Register (CKSEL)	
8.2.3 Timer RD ELC Register (TRDELC)	
8.2.4 Timer RD Start Register (TRDSTR)	

2.1.6 Pins for each product (pins other than port pins)

This subchapter shows the pins other than the ports shown in tables 2-2.

 \checkmark indicates the pin that is provided in the product and — indicates the pin that is not provided.

Pin	I/O	Function		Pi	n Count		
Function			144-pin	100-pin	80-pin	64-pin	48-pin
ANI0	Input	A/D converter analog input (V _{DD} connection)	\checkmark	\checkmark		\checkmark	\checkmark
ANI1	Input		\checkmark	\checkmark		\checkmark	\checkmark
ANI2	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI3	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI4	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI5	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI6	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI7	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI8	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI9	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI10	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI11	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI12	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI13	Input		\checkmark	\checkmark	\checkmark	\checkmark	_
ANI14	Input		\checkmark	\checkmark	\checkmark	\checkmark	_
ANI15	Input		\checkmark	\checkmark	\checkmark	\checkmark	_
ANI16	Input		\checkmark	\checkmark	\checkmark	\checkmark	—
ANI17	Input		\checkmark	\checkmark	\checkmark		_
ANI18	Input		\checkmark	\checkmark	_		_
ANI19	Input		\checkmark	\checkmark	_		_
ANI20	Input		\checkmark	\checkmark	_		_
ANI21	Input				_	—	_
ANI22	Input				_	—	_
ANI23	Input		\checkmark		_		_
ANI24	Input	A/D converter analog input (EVDD connection)	\checkmark		\checkmark	\checkmark	\checkmark
ANI25	Input				\checkmark	\checkmark	\checkmark
ANI26	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
ANI27	Input				\checkmark	_	\checkmark
ANI28	Input				\checkmark	_	\checkmark
ANI29	Input				\checkmark	_	_
ANI30	Input		\checkmark	\checkmark	\checkmark	_	_
IVCMP00	Input	Comparator analog voltage input	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IVCMP01	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IVCMP02	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IVCMP03	Input		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IVREF0	Input	Comparator reference voltage input	\checkmark		\checkmark	\checkmark	\checkmark

Table 2-2. List of RL78/F15 Pins Other than Port Pins (1/5)

Address	Special Function Register (2nd SFR) Name	Sy	rmbol	R/W	Manip	After		
					1-bit	8-bit	16-bit	reset
F03D4H	CAN receive buffer register 3BL Note 2	RMTS3L	RMTS3	R	-	\checkmark	\checkmark	0000H
F03D5H		RMTS3H			_	\checkmark		
F03D6H	CAN receive rule entry register 4BH Note 1	GAFLMH4L	GAFLMH4	R/W	-	\checkmark	\checkmark	0000H
F03D7H		GAFLMH4H	_		_	\checkmark		
F03D6H	CAN receive buffer register 3BH Note 2	RMPTR3L	RMPTR3	R	_	\checkmark	\checkmark	0000H
F03D7H		RMPTR3H	_		_	\checkmark		
F03D8H	CAN receive rule entry register 4CL Note 1	GAFLPL4L	GAFLPL4	R/W	_	\checkmark	\checkmark	0000H
F03D9H		GAFLPL4H	_		_	\checkmark		
F03D8H	CAN receive buffer register 3CL Note 2	RMDF03L	RMDF03	R	_	\checkmark	\checkmark	0000H
F03D9H		RMDF03H	-		_	\checkmark		
F03DAH	CAN receive rule entry register 4CH Note 1	GAFLPH4L	GAFLPH4	R/W	_			0000H
F03DBH		GAFLPH4H	_		_			
F03DAH	CAN receive buffer register 3CH Note 2	RMDF13L	RMDF13	R	_	\checkmark	\checkmark	0000H
F03DBH		RMDF13H	-		_	\checkmark		
F03DCH	CAN receive rule entry register 5AL Note 1	GAFLIDL5L	GAFLIDL5	R/W	_	\checkmark	\checkmark	0000H
F03DDH	1	GAFLIDL5H	_		_	\checkmark		
F03DCH	CAN receive buffer register 3DL Note 2	RMDF23L	RMDF23	R	_	\checkmark	\checkmark	0000H
F03DDH		RMDF23H	_		_	\checkmark		
F03DEH	CAN receive rule entry register 5AH Note 1	GAFLIDH5L	GAFLIDH5	R/W	_	\checkmark	\checkmark	0000H
F03DFH	1	GAFLIDH5H	_		_	\checkmark		
F03DEH	CAN receive buffer register 3DH Note 2	RMDF33L	RMDF33	R	_	\checkmark	\checkmark	0000H
F03DFH	1	RMDF33H	_		I	\checkmark		
F03E0H	CAN receive rule entry register 5BL Note 1	GAFLML5L	GAFLML5	R/W	-	\checkmark	\checkmark	0000H
F03E1H]	GAFLML5H			I	\checkmark		
F03E0H	CAN receive buffer register 4AL Note 2	RMIDL4L	RMIDL4	R	-	\checkmark	\checkmark	0000H
F03E1H		RMIDL4H			-	\checkmark		
F03E2H	CAN receive rule entry register 5BH Note 1	GAFLMH5L	GAFLMH5	R/W	-	\checkmark	\checkmark	0000H
F03E3H		GAFLMH5H			١	\checkmark		
F03E2H	CAN receive buffer register 4AH Note 2	RMIDH4L	RMIDH4	R	١	\checkmark	\checkmark	0000H
F03E3H		RMIDH4H			-	\checkmark		
F03E4H	CAN receive rule entry register 5CL Note 1	GAFLPL5L	GAFLPL5	R/W	١	\checkmark	\checkmark	0000H
F03E5H		GAFLPL5H			١	\checkmark		
F03E4H	CAN receive buffer register 4BL Note 2	RMTS4L	RMTS4	R	1	\checkmark	\checkmark	0000H
F03E5H		RMTS4H			-	\checkmark		
F03E6H	CAN receive rule entry register 5CH Note 1	GAFLPH5L	GAFLPH5	R/W	-	\checkmark	\checkmark	0000H
F03E7H		GAFLPH5H			-	\checkmark		
F03E6H	CAN receive buffer register 4BH Note 2	RMPTR4L	RMPTR4	R	1	\checkmark	\checkmark	0000H
F03E7H		RMPTR4H			-	\checkmark		
F03E8H	CAN receive rule entry register 6AL Note 1	GAFLIDL6L	GAFLIDL6	R/W		\checkmark	\checkmark	0000H
F03E9H		GAFLIDL6H			-	\checkmark		
F03E8H	CAN receive buffer register 4CL Note 2	RMDF04L	RMDF04	R	-	\checkmark	\checkmark	0000H
F03E9H		RMDF04H			I	\checkmark		
F03EAH	CAN receive rule entry register 6AH Note 1	GAFLIDH6L	GAFLIDH6	R/W	-	\checkmark	\checkmark	0000H
F03EBH		GAFLIDH6H			_	\checkmark		

Table 3-6.	Extended SFR (2nd SFR) List (19/52)
------------	-------------------------------------

Notes 1. These registers are allocated to the RAM window 0 for the CAN module (receive rule and CAN RAM test register). When setting these registers, set the RPAGE bit in the GRWCR register to 0.

2. These registers are allocated to the RAM window 1 for the CAN module (receive buffer, receive FIFO buffer, transmit/receive FIFO buffer, transmit buffer, and transmit history data). When setting these registers, set the RPAGE bit in the GRWCR register to 1.

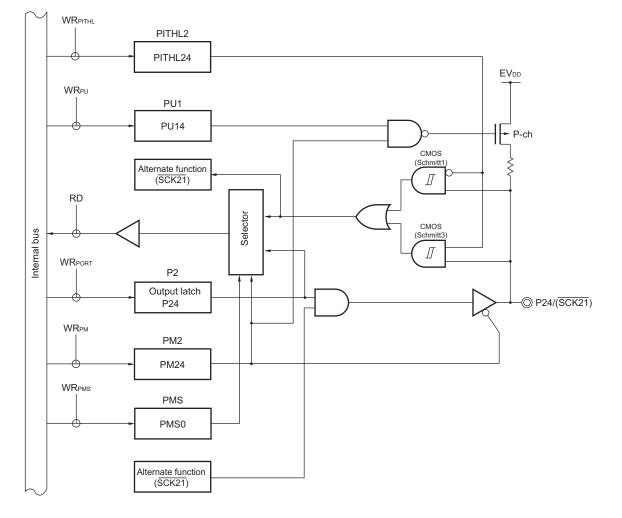


Figure 4-19. Block Diagram of P24

- P2: Port register 2
- PU2: Pull-up resistor option register 2
- PM2: Port mode register 2
- PMS: Port mode select register
- PITHL2: Port input threshold control register 2
- RD: Read signal
- WRxx: Write signal

4.3.9 Peripheral I/O redirection register 0 (PIOR0)

This register is used to specify whether to enable or disable the peripheral I/O redirect function.

PIOR0 enables or disables redirection of the timer array unit functions; that is, it specifies which I/O port is assigned to each input pin of timer array unit 0.

This register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 4-100. Format of Peripheral I/O Redirection Register 0 (PIOR0)

Address: F0016H Af		After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PIOR0	PIOR07	PIOR06	PIOR05	PIOR04	PIOR03	PIOR02	PIOR01	PIOR00

Bit	Function	144	-pin	100)-pin	80-	pin	64-	pin	48-	pin
		Setting	g value	Setting	g value	Setting	g value	Setting	g value	Setting	g value
		0 1		0	1	0	0 1		1	0	1
PIOR07	TI07	P120	P44	P120	P44	P120	P44	P120	_	P120	_
PIOR06	TI06	P14	P02	P14	P02	P14	P02	P14		P14	_
PIOR05	TI05	P15 P00		P15	P15 P00		P00	P15	P00	P15	P00
PIOR04	TI04	P13	P01	P13	P01	P13	P01	P13		P13	_
PIOR03	DR03 TI03		P127	P125	P127	P125	_	P125		P125	_
PIOR02	TI02	P16	P67	P16	P67	P16	P67	P16		P16	_
PIOR01	TI01	P30 P126		P30	P30 P126		P126	P30		P30	_
PIOR00	TI00	P17	P66	P17	P66	P17	P66	P17	_	P17	

- (3) Change the CPU from operating with the high-speed on-chip oscillator clock (B) or operating with the high-speed system clock (C) to operating with the subsystem clock (D).
 - Set the RTCLPC bit of the OSMC register.
 - Set the SELLOSC bit of the CKSEL register to 0.
 - Set the CMC register (EXCLKS = x, OSCSELS = 1, AMPHS[1:0] = xx). Note
 - Set the XTSTOP bit of the CSC register to 0.
 - Wait for oscillation stabilization.
 - Set the CSS bit of the CKC register to 1.
 - Confirm that the CLS bit of the CKC register is set to 1.
 - **Note** The clock operation mode control register (CMC) can be written only once by an 8-bit memory manipulation instruction after reset release.
- (4) Change the CPU from operating with the high-speed on-chip oscillator clock (B) or operating with the highspeed system clock (C) to operating with the low-speed on-chip oscillator clock (M).
 - Set the SELLOSC bit of the CKSEL register to 1.
 - Set the CMC register (EXCLKS = x, OSCSELS = 1). Note
 - Set the CSS bit of the CKC register to 1.
 - Confirm that the CLS bit of the CKC register is set to 1.
 - **Note** The clock operation mode control register (CMC) can be written only once by an 8-bit memory manipulation instruction after reset release.
- (5) Change the CPU from operating with the high-speed on-chip oscillator clock (B) or operating with the highspeed system clock (C) to operating with the PLL clock (K).
 - Set the PLLCTL register (PLLDIV1 = x, LCKSEL[1:0] = xx, PLLDIV0 = x, PLLMUL = x).
 - Wait for the selection of the PLL multiplication value to become effective (After setting the PLLMUL bit, wait for at least 1 μs).
 - Set the PLLON bit of the PLLCTL register to 1.
 - Confirm that the LOCK bit of the PLLSTS register is set to 1 (checking PLL locked state).
 - Set the MDIV [2:0] bits of the MDIV register.
 - Set the SELPLL bit of the PLLCTL register to 1.
 - Confirm that the SELPLLS bit of the PLLSTS register is set to 1.
- (6) Change the CPU from operating with the high-speed system clock (C) to operating with the high-speed onchip oscillator clock (B).
 - Set the HIOSTOP bit of the CSC register to 0. Note
 - Set the MCM0 bit of the CKC register to 0.
 - Confirm that the MCS bit of the CKC register is set to 0.
 - Note When oscillation starts from a high-speed on-chip oscillator clock stop state (HIOSTOP = 1), have the software wait for the following oscillation accuracy stabilization time, and then change the clock.
 FRQSEL4 of the user option byte (000C2H/020C2H) = 0: 18 μs to 65 μs
 FRQSEL4 of the user option byte (000C2H/020C2H) = 1: 18 μs to 105 μs

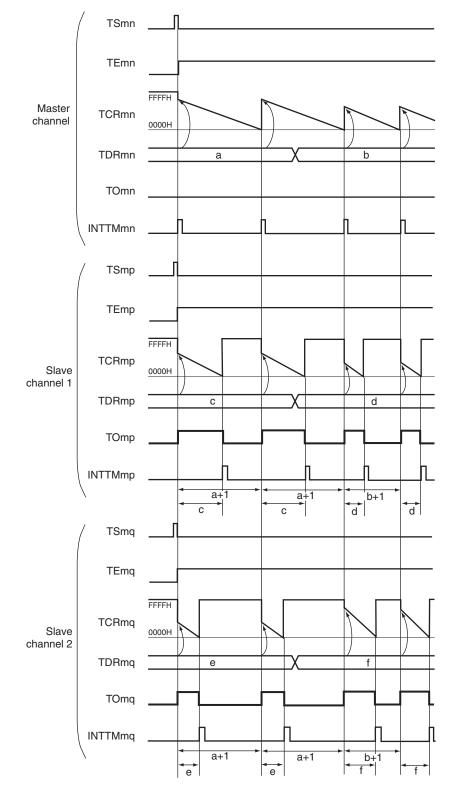


Figure 6-80 Example of Basic Timing of Operation as Multiple PWM Output Function (Output two types of PWMs)

(Remarks are listed on the next page.)

8.2.9 Timer RD Output Master Enable Register 2 (TRDOER2)

Figure 8-10. Format of Timer RD Output Master Enable Register 2 (TRDOER2) [PWM Function, Reset Synchronous PWM Mode, Complementary PWM Mode, and PWM3 Mode]

Address: F0268H After Reset: 00H Note 1

Symbol	<7>	6	5	4	3	2	1	<0>
TRDOER2	TRDPTO	0	0	0	0	0	0	TRDSHUTS

TRDPTO	INTP0 of pulse output forced cutoff signal input enabled Note 2	R/W
0	Pulse output forced cutoff input disabled	R/W
1	Pulse output forced cutoff input enabled	
	(The TRDSHUTS bit is set to 1 when a low level is applied to the INTP0 pin.)	

Bits 6 to 1	Nothing is assigned	R/W
_	The write value must be 0. The read value is 0.	R

TRDSHUTS	Forced cutoff flag	R/W								
0	Not forcibly cut off	R/W								
1	1 Forcibly cut off									
This bit is set to 1 when the pulse is forcibly cut off by an INTP0 or ELC input event. This bit is not										
automatically	cleared. To stop the forced cutoff of the pulse, write 0 to this bit while the count is									
stopped (TSTARTi = 0). The pulse is also forcibly cut off when 1 is written to the TRDSHUTS bit in										
an enabled m	node.									

- **Notes 1.** The value after reset is undefined when FRQSEL4 = 1 in the user option byte (000C2H/020C2H) and TRD0EN = 0 in the PER1 register. If it is necessary to read the initial value, set fclk to fiH and TRD0EN = 1 before reading.
 - 2. See 8.3.1 (4) Pulse Output Forced Cutoff.

14.2.5 A/D port configuration register (ADPC)

This register switches the ANI0/P33 to ANI23/P105 pins to digital I/O of port or analog input.

When the comparator is in use, set the pins selected from among P81/ANI3/IVCMP00, P82/ANI4/IVCMP01, P83/ANI5/IVCMP02, P84/ANI6/IVCMP03, and P85/ANI7/IVREF0 to analog input by using the ADPC register.

The ADPC register can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets this register to 00H.

Figure 14-6. Format of A/D Port Configuration Register (ADPC)

A	Address: F0076H After reset: 00H																											
Symbol 7							6				5			4			3			2			1			0		
	AD	PC	Γ		0			0		0			ADPC4		Ļ	ADPC3			ADPC2			ADPC1			ADPC0			
			-																									
													Analo	og inp	out (A)/dig	ital I/0) (D	swite	ching								
ADPC4	ADPC3	ADPC2	ADPC1	ADPC0	ANI23/P105	ANI22/P104	ANI21/P103	ANI20/P102	ANI19/P101	ANI18/P100	ANI17/P97	ANI16/P96	ANI15/P95	ANI14/P94	ANI13/P93	ANI12/P92	ANI11/P91	ANI10/P90	ANI9/P87	ANI8/P86	ANI7/IVREF0/P85	ANI6/IVCMP03/P84	ANI5/IVCMP02/P83	ANI4/IVCMP01/P82	ANI3/IVCMP00/P81	ANI2/ANO0/P80	ANI1/P34	ANI0/P33
0	0	0	0	0	Α	А	Α	Α	Α	А	А	А	А	А	Α	Α	Α	Α	А	Α	Α	Α	А	А	А	А	А	Α
0	0	0	0	1	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D
0	0	0	1	0	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α
0	0	0	1	1	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α
0	0	1	0	0	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α
0	0	1	0	1	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α
0	0	1	1	0	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	А	Α	Α	Α	Α
0	0	1	1	1	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	А	Α	Α	Α	Α
0	1	0	0	0	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	А	Α	Α	Α	Α
0	1	0	0	1	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	А	А	А	Α	Α	Α
0	1	0	1	0	D	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	А	Α	Α	Α	Α
0	1	0	1	1	D	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0	1	1	0	0	D	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0	1	1	0	1	D	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	А	А	А	А	Α	Α
0	1	1	1	0	D	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	А	А	А	А	Α	Α
0	1	1	1	1	D	D	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	А	А	Α	Α
1	0	0	0	0	D	D	D	D	D	D	D	D	D	Α	Α	Α	А	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α
1	0	0	0	1	D	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
1	0	0	1	0	D	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
1	0	0	1	1	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
1	0	1	0	0	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
1	0	1	0	1	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
1	0	1	1	0	D	D	D	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	А	Α
1	0	1	1	1	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
1	1	0	0	0	D	А	Α	Α	А	А	А	А	А	А	А	Α	Α	А	А	Α	Α	Α	А	А	А	А	А	Α
0	ther	than	abov	/e											Set	ing p	rohib	ited										

Caution Set the pins to be used for the comparator (P81/ANI3/IVCMP00, P82/ANI4/IVCMP01, P83/ANI5/IVCMP02, P84/ANI6/IVCMP03, and P85/ANI7/IVREF0) to the input mode by using port mode registers 8 (PM8).

RENESAS

16.4.2 Setting transfer clock by using IICWL0 and IICWH0 registers

(1) Setting transfer clock on master side

Transfer clock =	fмск
	IICWL0 + IICWH0 + fмск (tr + tr)

At this time, the optimal setting values of the IICWL0 and IICWH0 registers are as follows. (The fractional parts of all setting values are rounded up.)

• When the fast mode

$$\begin{split} \text{IICWL0} = \frac{0.52}{\text{Transfer clock}} \times \text{f}_{\text{MCK}} \\ \text{IICWH0} = (\frac{0.48}{\text{Transfer clock}} - \text{t}_{\text{R}} - \text{t}_{\text{F}}) \times \text{f}_{\text{MCK}} \end{split}$$

• When the normal mode

$$IICWL0 = \frac{0.47}{Transfer clock} \times f_{MCK}$$
$$IICWH0 = (\frac{0.53}{Transfer clock} - t_R - t_F) \times f_{MCK}$$

• When the fast mode plus

$$\begin{split} \text{IICWL0} = \frac{0.50}{\text{Transfer clock}} \times \text{f}_{\text{MCK}} \\ \text{IICWH0} = (\frac{0.50}{\text{Transfer clock}} - \text{t}_{\text{R}} - \text{t}_{\text{F}}) \times \text{f}_{\text{MCK}} \end{split}$$

(2) Setting IICWL0 and IICWH0 registers on slave side

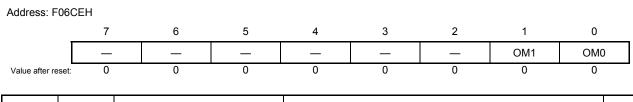
(The fractional parts of all setting values are truncated.)

When the fast mode

IICWL0 = 1.3 μ s × fmck IICWH0 = (1.2 μ s – tr – tr) × fmck

When the normal mode

IICWL0 = 4.7 μ s × fmck IICWH0 = (5.3 μ s - tr - tr) × fmck


• When the fast mode plus

IICWL0 = 0.50 μ s × fmck IICWH0 = (0.50 μ s – tr – tf) × fmck

(Cautions and Remarks are listed on the next page.)

(16) LIN/UART Control Register (LCUCn)

Bit	Symbol	Bit Name	Function	R/W
0	OM0	LIN Reset	0: LIN reset mode is caused. 1: LIN reset mode is canceled.	R/W
1	OM1	LIN Mode Select	0: LIN wake-up mode is caused. 1: LIN operation mode is caused.	R/W
7 to 2	—	Reserved	These bits are always read as 0. The write value should always be 0.	R/W

Set the LCUCn register to 01H to cause a transition to LIN wake-up mode after canceling LIN reset mode, and set the LCUCn register to 03H to cause a transition to LIN operation mode.

In LIN self-test mode, set the LCUCn register to 03H after a transition to LIN self-test mode is completed.

After a value is written to this register, confirm that the value written is actually indicated in the LMSTn register before writing another value.

OM0 bit (LIN reset bit)

The OM0 bit selects either causing a transition to LIN reset mode or canceling LIN reset mode.

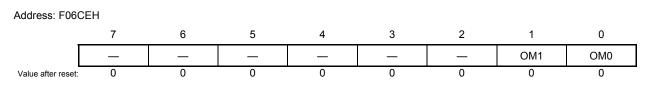
With 0 set, LIN reset mode is caused.

With 1 set, LIN reset mode is canceled.

OM1 bit (LIN mode select bit)

The OM1 bit selects the specific operation mode (either LIN wake-up mode or LIN operation mode) after canceling LIN reset mode.

With 0 set, LIN wake-up mode is caused.


With 1 set, LIN operation mode is caused.

This register is valid only when the OMM0 bit in the LMSTn register is 1.

Writing a value to this bit is disabled while the FTS bit in the LTRCn register is 1.

(15) LIN/UART Control Register (LCUCn)

Bit	Symbol	Bit Name	Function	R/W
0	OM0	LIN Reset	0: LIN reset mode is caused. 1: LIN reset mode is canceled.	R/W
1	OM1	LIN Mode Select	0: LIN wake-up mode is caused. 1: LIN operation mode is caused.	R/W
7 to 2	—	Reserved	These bits are always read as 0. The write value should always be 0.	R/W

Set the LCUCn register to 01H to cause a transition to LIN wake-up mode after canceling LIN reset mode, and set the LCUCn register to 03H to cause a transition to LIN operation mode.

In LIN self-test mode, set the LCUCn register to 03H after a transition to LIN self-test mode is completed.

When the LIN/UART module makes a transition from the LIN operating mode to the LIN reset mode while operating as a LIN slave (at a fixed baud rate), write 1 to the LIN0EN bit (or the LIN1EN bit) in the PER2 register after having cleared the given bit to 0.

After a value is written to this register, confirm that the value written is actually indicated in the LMSTn register before writing another value.

OM0 bit (LIN reset bit)

The OM0 bit selects either causing a transition to LIN reset mode or canceling LIN reset mode.

With 0 set, LIN reset mode is caused.

With 1 set, LIN reset mode is canceled.

OM1 bit (LIN mode select bit)

The OM1 bit selects the specific operation mode (either LIN wake-up mode or LIN operation mode) after canceling LIN reset mode.

With 0 set, LIN wake-up mode is caused.

With 1 set, LIN operation mode is caused.

This register is valid only when the OMM0 bit in the LMSTn register is 1.

Writing a value to this bit is disabled while the FTS bit in the LTRCn register is 1.

(23) LIN/UART Data Buffer m Register (LDBnm) (m = 1 to 8)

Address: LDBn1 F06D8H, LDBn2 F06D9H, LDBn3 F06DAH, LDBn4 F06DBH, LDBn5 F06DCH, LDBn6 F06DDH, LDBn7 F06DEH, LDBn8 F06DFH									
	7	6	5	4	3	2	1	0	
Value after re	Value after reset: 0 0 0 0 0 0 0 0							0	
Bit	Function							Setting Range	R/W
7 to 0	Sets the data to be transmitted or allows the received data to be read.							00H to FFH	R/W

For response transmission:

These registers set the data to be transmitted in the response field.

Set these registers when the RTS bit is 0 (response reception/transmission is halted).

For response reception:

These registers hold the data received in the response field.

The received data is overwritten. If an error is detected, the data prior to reception interruption is stored in the register. Do not read these registers when the RTS bit is 1 (response transmission/reception is started)

In LIN self-test mode, this register operates as follows:

Write the value to be transmitted before communication. The reversed value of the value received can be read from the register after frame transmission/reception is completed (after loopback).

For details of LIN self-test mode, refer to 17.6 LIN Self-Test Mode.

Figure 22-3. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, MK3L, MK3H) (2/2)

Address: FFF	D7H Afte	r reset: FFH	R/W						
Symbol	7	6	5	<4>	<3>	<2>	<1>	<0>	
МКЗН	-	_	_	PMK14 LIN2WUPMK	-	CAN1CFRMK	CAN1WUPMK	CAN1ERRMK	
	MKxx Interrupt servicing control								
	0 Interrupt servicing enabled 1 Interrupt servicing disabled								

Caution The above is the bit layout for the 144-pin. The available bits differ depending on the product. For details about the bits available for each product, see Table 22-2. Be sure to set bits that are not available to 1.

H/ Item	ALT Mode Setting		kecuted While CPU Is Operating ystem Clock	When HALT Instruction Is Executed While CPU Is			
		When CPU Is Operating on XT1 Clock (fxr)	When CPU Is Operating on External Subsystem Clock (fexs)	Operating on Low-speed On-chip Oscillator Clock (fiL)			
System clock		Clock supply to the CPU is s	topped				
Main system clock	fıн	Operation disabled					
	fx						
	fex						
	fpll						
Subsystem clock	fхт	Operation continues (cannot be stopped)	Cannot operate	Cannot operate			
	fexs	Cannot operate	Operation continues (cannot be stopped)				
fı∟			hip debug option byte (000C3H/02 4 (WUTMMCK0) of the OSMC reg				
		• WUTMMCK0 = 1: Oscillate					
		WUTMMCK0 = 0 and SELL					
			C = 0, and HPIEN = 1: Oscillates				
6			C = 0, and HPIEN = 0: Stops				
fwbт		 Set by bits 0 (WDSTBYON) and 4 (WDTON) of user option byte (000C0H/020C0H) WDTON = 0: Stops WDTON = 1 and WDSTBYON = 1: Oscillates WDTON = 1 and WDSTBYON = 0: Stops 					
CPU		Operation stopped					
Code flash memory							
Data flash memory							
RAM		Operation stopped (operation can continue during DTC transfer)					
Port (latch)		Status before HALT mode was set is retained					
Timer array unit		Operable (Operation is disabled while in the low consumption RTC mode)					
Real-time clock (RTC)		Operable					
Watchdog timer		See CHAPTER 11 WATCHDOG TIMER					
Clock monitor		Operation stopped					
Timer RJ		Operable (Operation is disabled while in the low consumption RTC mode)					
Timer RD]					
Clock output/buzzer output	ıt						
A/D converter		Operation disabled					
D/A converter							
Comparator							
Serial array unit (SAU)		Operable (Operation is disabled while in the low consumption RTC mode)					
Serial interface (IICA)		Operation disabled					
DTC		Operable					
ELC		Linking between operational function blocks is possible.					
LIN/UART module (RLIN3	,	Operation disabled					
CAN interface (RS-CAN li	te)	4					
IEBus Controller							
Power-on-reset function		Operable					
Voltage detection function	1						
External interrupt							
Key interrupt function							

Table 24-1. Operating Statuses in HALT Mode (2/2)

CHAPTER 26 POWER-ON-RESET CIRCUIT

26.1 Functions of Power-on-reset Circuit

The power-on-reset circuit (POR) has the following functions.

- Generates internal reset signal at power on.
 The reset signal is released when the supply voltage (VDD) exceeds 1.56 V (typ.).
- Compares supply voltage (V_{DD}) and detection voltage (V_{PDR} = 1.55 V (typ.)), generates internal reset signal when V_{DD} < V_{PDR}.
 - Caution If an internal reset signal is generated in the POR circuit, the POCRES_0 and CLKRF flags of the POR/CLM reset confirmation register (POCRES) and the TRAP, WDCLRF, IAWRF, and LVIRF flags of the reset control flag register (RESF) are cleared (00H).
 - **Remark** This product incorporates multiple hardware functions that generate an internal reset signal. A flag that indicates the reset source is located in the RESF and POCRES registers for when an internal reset signal is generated by the power-on reset (POR), watchdog timer (WDT), clock monitor, voltage detector (LVD), illegal instruction execution, or illegal-memory access. The RESF register is not cleared to 00H and the flag is set to 1 when an internal reset signal is generated by the watchdog timer (WDT), voltage detector (LVD), illegal instruction execution, clock monitor, or illegal-memory access. The POCRES register is not cleared to 00H and the flag is set to 1 when an internal reset signal is generated by the watchdog timer (WDT), voltage detector (LVD), illegal instruction execution, clock monitor, or illegal-memory access. The POCRES register is not cleared to 00H and the flag is set to 1 when an internal reset signal is generated by the clock monitor. For details of the POCRES and RESF registers, see **CHAPTER 25 RESET FUNCTION**.

28.3.4 CPU stack pointer monitor function

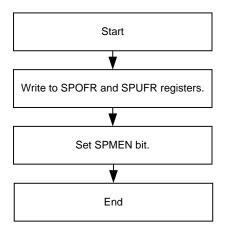
The CPU stack pointer monitor is used to detect overflows and underflows of the stack pointer and to generate interrupts in response.

Caution The CPU stack pointer monitor function is disabled during on-chip debugging.

<Configuration>

This function has the following functions.

- SP overflow/underflow detection function
- SP overflow/underflow interrupt output function


When the SPM enable bit (SPMEN) is 1, an interrupt signal (INTSPM) is generated if the monitored stack pointer value is greater than the specified SFR value (SPOFR) or smaller than the specified SFR value (SPUFR).

When the SPM enable bit (SPMEN) is 1, writing to the SPOFR and SPUFR registers is invalid.

<Register setting method>

Figure 28-14 shows the register setting method of this function.

Instruction	Mnemon	Operands	Bytes	Bytes Clocks Note 1 Note 2		Clocks		Flag	
Group	ic						Ζ	AC	CY
Stack	PUSH	PSW	2	1	_	$(SP - 1) \leftarrow PSW$, $(SP - 2) \leftarrow 00H$,			
manipulate						$SP \leftarrow SP-2$			
		rp	1	1	-	$(SP - 1) \leftarrow rp_{H}, (SP - 2) \leftarrow rp_{L},$			
						$SP \leftarrow SP - 2$			
	POP	PSW	2	3	-	$PSW \gets (SP+1), SP \gets SP+2$	R	R	R
		rp	1	1	_	rp∟←(SP), rp⊢← (SP+1), SP ← SP + 2			
	MOVW	SP, #word	4	1	-	$SP \gets word$			
		SP, AX	2	1	-	$SP \gets AX$			
		AX, SP	2	1	-	$AX \leftarrow SP$			
		HL, SP	3	1	-	$HL \leftarrow SP$			
		BC, SP	3	1	-	$BC \gets SP$			
	DE, SP	3	1	_	$DE \gets SP$				
	ADDW	SP, #byte	2	1	-	$SP \leftarrow SP + byte$			
SUBW	SUBW	SP, #byte	2	1	_	$SP \leftarrow SP$ – byte			
Unconditio	BR	AX	2	3	-	$PC \gets CS, AX$			
nal branch		\$addr20	2	3	_	$PC \gets PC + 2 + jdisp8$			
		\$!addr20	3	3	-	$PC \leftarrow PC + 3 + jdisp16$			
		!addr16	3	3	-	PC ← 0000, addr16			
		!!addr20	4	3	_	$PC \leftarrow addr20$			
Conditional	BC	\$addr20	2	2/4 Note3	-	$PC \gets PC + 2 + jdisp8 \text{ if } CY = 1$			
branch	BNC	\$addr20	2	2/4 Note3	-	$PC \gets PC + 2 + jdisp8 \text{ if } CY = 0$			
	BZ	\$addr20	2	2/4 Note3	-	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 1$			
	BNZ	\$addr20	2	2/4 Note3	-	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$			
	BH	\$addr20	3	2/4 Note3	-	$PC \gets PC + 3 + jdisp8 \text{ if } (Z{\lor}CY){=}0$			
	BNH	\$addr20	3	2/4 Note3	_	$PC \gets PC + 3 + jdisp8 \text{ if } (Z{\lor}CY){=}1$			
	ВТ	saddr.bit, \$addr20	4	3/5 Note3	-	$PC \leftarrow PC + 4 + jdisp8$ if (saddr).bit = 1			
		sfr.bit, \$addr20	4	3/5 Note3	-	$PC \leftarrow PC + 4 + jdisp8$ if sfr.bit = 1			
		A.bit, \$addr20	3	3/5 Note3	-	$PC \leftarrow PC + 3 + jdisp8$ if A.bit = 1			
		PSW.bit, \$addr20	4	3/5 Note3	_	$PC \leftarrow PC + 4 + jdisp8$ if PSW.bit = 1			
		[HL].bit, \$addr20	3	3/5 Note3	6/7	$PC \leftarrow PC + 3 + jdisp8$ if (HL).bit = 1			
		ES:[HL].bit, \$addr20	4	4/6 Note3	7/8	$PC \gets PC + 4 + jdisp8 \text{ if (ES, HL).bit} = 1$			

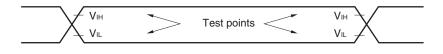
Notes 1. Number of CPU clocks (fcLk) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.

2. Number of CPU clocks (fcLK) when the program memory area is accessed.

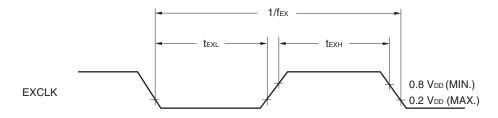
3. This indicates the number of clocks "when condition is not met/when condition is met".

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

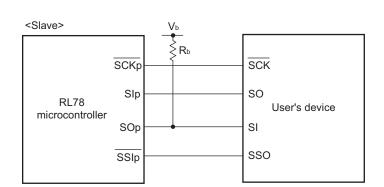
Parameter	Symbol	Cond	ditions	MIN.	TYP.	MAX.	Unit
Port output rise time, port tRO, tr	tro, tro	P00 to P07, P10 to	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			25	ns
output fall time		P17, P20 to P27, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P106, P107, P110 to P117, P120, P125 to P127, P130 to P136, P140 to P147, P150 to 157, P160 to 167 (normal slew rate) C = 30 pF	2.7 V ≤ EV _{DD0} < 4.0 V			55	ns
		P10, P12, P14, P30,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		25 Note	60	ns
		P120, P140 (special slew rate)	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			100	ns
		C = 30 pF					


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$	(2/2))
	\	/

Note $T_A = +25^{\circ}C$, EV_{DD0} = 5.0 V


Caution Excluding the error in oscillation frequency accuracy.

Remark fmck: Timer array unit operation clock frequency


AC Timing Test Points

External System Clock Timing

CSI mode connection diagram (during communication at different potential)

- Caution Select the TTL input buffer for the SIp, SCKp and SSIp pins and N-ch open-drain output mode for the SOp pin.
- Remarks 1.R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance,
V_b [V]: Communication line voltage
 - **2.** p: CSIp (p = 00, 01, 10, 11), m: Unit m (m = 0, 1), n: Channel n (n = 0, 1)
 - AC characteristics of the serial array unit during communication at different potential in CSI mode are measured with the V_{IH} and V_{IL} below: When 4.0 V ≤ EV_{DD0} ≤ 5.5 V, 2.7 V ≤ V_b ≤ 4.0 V: V_{IH} = 2.2 V, V_{IL} = 0.8 V

R01UH0559EJ0100 Rev.1.00 Jan 29, 2016

