

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

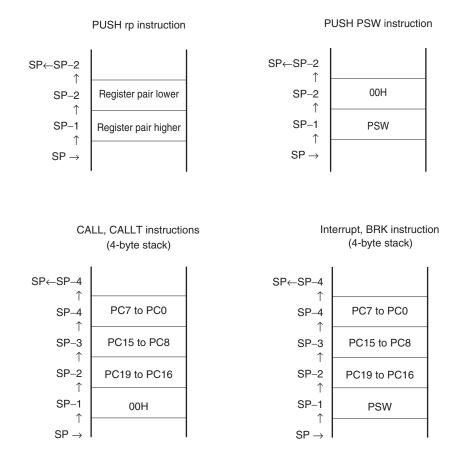
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, CSI, I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	130
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 31x10b; D/A 1x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LFQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f113tjlfb-x0

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Correspondence between the address values and block numbers in the flash memory are shown below.

Address Value	Block Number						
00000H to 003FFH	000H	08000H to 083FFH	020H	10000H to 103FFH	040H	18000H to 183FFH	060H
00400H to 007FFH	001H	08400H to 087FFH	021H	10400H to 107FFH	041H	18400H to 187FFH	061H
00800H to 00BFFH	002H	08800H to 08BFFH	022H	10800H to 10BFFH	042H	18800H to 18BFFH	062H
00C00H to 00FFFH	003H	08C00H to 08FFFH	023H	10C00H to 10FFFH	043H	18C00H to 18FFFH	063H
01000H to 013FFH	004H	09000H to 093FFH	024H	11000H to 113FFH	044H	19000H to 193FFH	064H
01400H to 017FFH	005H	09400H to 097FFH	025H	11400H to 117FFH	045H	19400H to 197FFH	065H
01800H to 01BFFH	006H	09800H to 09BFFH	026H	11800H to 11BFFH	046H	19800H to 19BFFH	066H
01C00H to 01FFFH	007H	09C00H to 09FFFH	027H	11C00H to 11FFFH	047H	19C00H to 19FFFH	067H
02000H to 023FFH	008H	0A000H to 0A3FFH	028H	12000H to 123FFH	048H	1A000H to 1A3FFH	068H
02400H to 027FFH	009H	0A400H to 0A7FFH	029H	12400H to 127FFH	049H	1A400H to 1A7FFH	069H
02800H to 02BFFH	00AH	0A800H to 0ABFFH	02AH	12800H to 12BFFH	04AH	1A800H to 1ABFFH	06AH
02C00H to 02FFFH	00BH	0AC00H to 0AFFFH	02BH	12C00H to 12FFFH	04BH	1AC00H to 1AFFFH	06BH
03000H to 033FFH	00CH	0B000H to 0B3FFH	02CH	13000H to 133FFH	04CH	1B000H to 1B3FFH	06CH
03400H to 037FFH	00DH	0B400H to 0B7FFH	02DH	13400H to 137FFH	04DH	1B400H to 1B7FFH	06DH
03800H to 03BFFH	00EH	0B800H to 0BBFFH	02EH	13800H to 13BFFH	04EH	1B800H to 1BBFFH	06EH
03C00H to 03FFFH	00FH	0BC00H to 0BFFFH	02FH	13C00H to 13FFFH	04FH	1BC00H to 1BFFFH	06FH
04000H to 043FFH	010H	0C000H to 0C3FFH	030H	14000H to 143FFH	050H	1C000H to 1C3FFH	070H
04400H to 047FFH	011H	0C400H to 0C7FFH	031H	14400H to 147FFH	051H	1C400H to 1C7FFH	071H
04800H to 04BFFH	012H	0C800H to 0CBFFH	032H	14800H to 14BFFH	052H	1C800H to 1CBFFH	072H
04C00H to 04FFFH	013H	0CC00H to 0CFFFH	033H	14C00H to 14FFFH	053H	1CC00H to 1CFFFH	073H
05000H to 053FFH	014H	0D000H to 0D3FFH	034H	15000H to 153FFH	054H	1D000H to 1D3FFH	074H
05400H to 057FFH	015H	0D400H to 0D7FFH	035H	15400H to 157FFH	055H	1D400H to 1D7FFH	075H
05800H to 05BFFH	016H	0D800H to 0DBFFH	036H	15800H to 15BFFH	056H	1D800H to 1DBFFH	076H
05C00H to 05FFFH	017H	0DC00H to 0DFFFH	037H	15C00H to 15FFFH	057H	1DC00H to 1DFFFH	077H
06000H to 063FFH	018H	0E000H to 0E3FFH	038H	16000H to 163FFH	058H	1E000H to 1E3FFH	078H
06400H to 067FFH	019H	0E400H to 0E7FFH	039H	16400H to 167FFH	059H	1E400H to 1E7FFH	079H
06800H to 06BFFH	01AH	0E800H to 0EBFFH	03AH	16800H to 16BFFH	05AH	1E800H to 1EBFFH	07AH
06C00H to 06FFFH	01BH	0EC00H to 0EFFFH	03BH	16C00H to 16FFFH	05BH	1EC00H to 1EFFFH	07BH
07000H to 073FFH	01CH	0F000H to 0F3FFH	03CH	17000H to 173FFH	05CH	1F000H to 1F3FFH	07CH
07400H to 077FFH	01DH	0F400H to 0F7FFH	03DH	17400H to 177FFH	05DH	1F400H to 1F7FFH	07DH
07800H to 07BFFH	01EH	0F800H to 0FBFFH	03EH	17800H to 17BFFH	05EH	1F800H to 1FBFFH	07EH
07C00H to 07FFFH	01FH	0FC00H to 0FFFFH	03FH	17C00H to 17FFFH	05FH	1FC00H to 1FFFFH	07FH

Table 3-1. Correspondence between Address Values and Block Numbers in Flash Memory (1/4)

Figure 3-15. Data to Be Saved to Stack Memory

4.2.5 Port 4

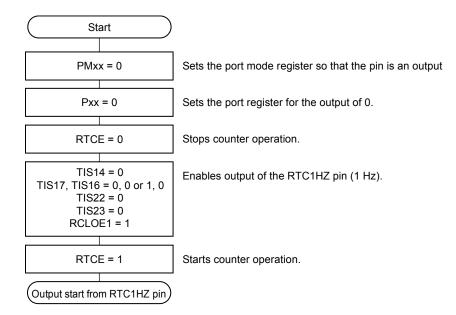
Port 4 is an I/O port with an output latch. Port 4 can be set to the input mode or output mode in 1-bit units using port mode register 4 (PM4). When the P40 to P47 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 4 (PU4).

For the P43 pin input, the threshold of the input buffer can be specified in 1-bit units using the port input threshold control register 4 (PITHL4).

This port can also be used for external interrupt request input, timer I/O, comparator output, SNOOZE status output, LIN serial data I/O, and data I/O for a flash memory programmer/debugger.

Reset signal generation sets this port to input mode.

Pin r	name	PM4x	PITHL4x	Alternate Function Setting Note 6	Remark
Name	I/O				
P40	Input	1	-	×	
	Output	0	-	×	
P41	Input	1	-	×	
	Output	0	-	TRJIO0 output = 0 Note 1	
				TO10 output = 0 Note 2	
				VCOUT0 output = 0 Note 3	
				SNZOUT2 output = 0 Note 4	
P42	Input	1	-	×	
	Output	0	-	(LTXD0 output = 1) Note 5	
P43	Input	1	0	×	CMOS input (Schmitt1 input)
			1	×	CMOS input (Schmitt3 input)
	Output	0	×	×	
P44	Input	1	-	×	
	Output	0	-	(TO07 output = 0) Note 2	
P45	Input	1	-	×	
	Output	0	-	(TO10 output = 0) Note 2	
P46	Input	1	-	×	
	Output	0	_	(TO12 output = 0) Note 2	
P47	Input	1	-	×	
	Output	0	_	×	


Table 4-9. Settings of Registers When Using Port 4

Notes 1. When a pin sharing a timer input/output function of the timer RJ is to be used as a general-purpose port pin, the TMOD2 to TMOD0 bits of the timer RJ mode register 0 (TRJMR0) must have the same setting as their initial value or have a setting other than 001B.

- 2. When a pin sharing a timer output function of the timer array unit is to be used as a general-purpose port pin, the TOmn bit of the timer output register m (TOm) and the TOEmn bit of the timer output enable register m (TOEm) corresponding to the target unit and channel must have the same setting as in the initial state (m = 0, 1, 2, n = 0 to 7).
- **3.** When a pin sharing the comparator output function is to be used as a general-purpose port pin, the COE bit of the comparator control register (CMPCTL) must have the same setting as its initial value.
- **4.** When a pin sharing the SNOOZE status output function is to be used as a general-purpose port pin, the OUTEN0 to OUTEN7 bits of the SNOOZE status output control registers 0, 1, 2, 3 (PSNZCNT0, 1, 2, 3) must have the same setting as its initial value.
- **5.** When a pin sharing the serial data output function of the LIN is to be used as a general-purpose port pin, operation of the corresponding LIN must be stopped.

RENESAS

9.4.5 1 Hz output of real-time clock

Figure 9-26. 1 Hz Output Setting Procedure

Caution First set the RTCEN bit to 1 while oscillation of the input clock (frc) is stable.

12.3.13 Port mode registers 3, 7 to 10, and 12 (PM3, PM7 to PM10, PM12)

When using the ANI0/P33 to ANI23/P105 and ANI24/P125 to ANI30/P74 pins for an analog input port, set the PMmn bit to 1. The output latches of PMmn at this time may be 0 or 1.

If the PMmn bits are set to 0, they cannot be used as analog input port pins.

The PMm registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH.

Cautions 1. Available pins differ depending on the products. For details, see CHAPTER 2 PIN FUNCTIONS.

2. If a pin is set as an analog input port, not the pin level but 0 is always read.

Remark m = 3, 7 to 10, 12; n = 0 to 7

Figure 12-17. Formats of Port Mode Registers 3, 7 to 10, and 12 (PM3, PM7 to PM10, PM12) (144-pin Products)

Address	s: FFF23H	After reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM3	1	1	1	PM34	PM33	1	1	1
Address	s: FFF27H	After reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM7	1	1	1	PM74	PM73	PM72	PM71	PM70
Address	s: FFF28H	After reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM8	PM87	PM86	PM85	PM84	PM83	PM82	PM81	PM80
Address	s: FFF29H	After reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM9	PM97	PM96	PM95	PM94	PM93	PM92	PM91	PM90
Address	s: FFF2AH	After reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM10	1	1	PM105	PM104	PM103	PM102	PM101	PM100
Address	s: FFF2CH	After reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PM12	1	1	PM125	1	1	1	1	PM120
					• • • • •			
	PM bit	_			O mode selecti	on		
	0	Output mode	(output buffer o	on)				

1 Input mode (output buffer off)

Caution When using AVREFP and AVREFM, specify ANIO and ANI1 as the analog input channels and specify input mode by using the port mode register.

15.2 Configuration of Serial Array Unit

The serial array unit includes the following hardware.

ltem	Configuration
	Configuration
Shift register	16 bits or 9 bits ^{Note 1}
Buffer register	16 bits or the lower 9 bits of Serial data register mn (SDRmn) ^{Note 1, 2}
Serial clock I/O	SCK00, SCK01, SCK10, SCK11, SCK20, SCK21 pins (for 3-wire serial I/O), SCL00, SCL01, SCL10, SCL11 pins (for simplified I ² C)
Serial data input	SI00, SI01, SI10, SI11, SI20, SI21 pins (for 3-wire serial I/O), RXD0 pin (for UART supporting LIN-bus), RXD1, RXD2 pin (for UART)
Serial data output	SO00, SO01, SO10, SO11, SO20, SO21 pins (for 3-wire serial I/O), TXD0 pin (for UART supporting LIN-bus), TXD1, TXD2 pin (for UART), output controller
Serial data I/O	SDA00, SDA01, SDA10, SDA11 pins (for simplified I ² C)
Slave select input	SSI00, SSI01, SSI10, SSI11 pin (for 3-wire serial I/O)
Control registers	<registers block="" of="" setting="" unit=""> Peripheral enable register 0 (PER0) Peripheral enable register 1 (PER1) Serial clock select register m (SPSm) Serial channel enable status register m (SEm) Serial channel start register m (SSm) Serial channel stop register m (STm) Serial output enable register m (SOEm) Serial output register m (SOEm) Serial output level register m (SOLm) Serial slave select enable register m (SSCm) ^{Note 3} Serial standby control register m (SSCm) ^{Note 4} Input switch control register 0 (NFEN0) </registers>
	<registers channel="" each="" of=""> Serial data register mn (SDRmn) Serial mode register mn (SMRmn) Serial communication operation setting register mn (SCRmn) Serial status register mn (SSRmn) Serial flag clear trigger register mn (SIRmn) Port input mode registers 1, 3, 5 to 7, 12 (PIM1, PIM3, PIM5 to PIM7, PIM12) Port output mode registers 1, 6, 7, 12 (POM1, POM6, POM7, POM12) Port mode registers 0 to 7, 15 (PM0 to PM7, PM15) Port registers 0 to 7, 15 (P0 to P7, P15) </registers>

Table 15-1. Configuration of	Serial Array Unit
------------------------------	-------------------

Notes1. The number of bits used as the shift register and buffer register differs depending on the unit and channel.

- mn = 00, 01, 10, 11: 16 bits
- mn = 20, 21: lower 9 bits
- 2. When SEmn is 1, the lower 8 bits of serial data register mn (SDRmn) can be read or written as the following SFR, depending on the communication mode.
 - CSIp communication ... SDRpL (CSIp data register)
 - UARTq reception ... SDR_{mm}L (UARTq receive data register)
 - UARTq transmission ... SDRmnL (UARTq transmit data register)
 - IICr communication ... SDRrL (IICr data register)
- **3.** m = 0, 1, n = 0, 1 only
- **4.** m = 2 only

16.5.16 Communication operations

The following shows three operation procedures with the flowchart.

(1) Master operation in single master system

The flowchart when using the RL78/F15 as the master in a single master system is shown below.

This flowchart is broadly divided into the initial settings and communication processing. Execute the initial settings at startup. If communication with the slave is required, prepare the communication and then execute communication processing.

(2) Master operation in multimaster system

In the l^2C bus multimaster system, whether the bus is released or used cannot be judged by the l^2C bus specifications when the bus takes part in a communication. Here, when data and clock are at a high level for a certain period (1 frame), the RL78/F15 takes part in a communication with bus released state.

This flowchart is broadly divided into the initial settings, communication waiting, and communication processing. The processing when the RL78/F15 loses in arbitration and is specified as the slave is omitted here, and only the processing as the master is shown. Execute the initial settings at startup to take part in a communication. Then, wait for the communication request as the master or wait for the specification as the slave. The actual communication is performed in the communication processing, and it supports the transmission/reception with the slave and the arbitration with other masters.

(3) Slave operation

An example of when the RL78/F15 is used as the I²C bus slave is shown below.

When used as the slave, operation is started by an interrupt. Execute the initial settings at startup, then wait for the INTIICA0 interrupt occurrence (communication waiting). When an INTIICA0 interrupt occurs, the communication status is judged and its result is passed as a flag over to the main processing.

By checking the flags, necessary communication processing is performed.

The meanings of <3> to <10> in (2) Address ~ data ~ data in Figure 16-32 are explained below.

- <3> In the slave device if the address received matches the address (SVA0 value) of a slave device^{Note}, that slave device sends an ACK by hardware to the master device. The ACK is detected by the master device (ACKD0 = 1) at the rising edge of the 9th clock.
- <4> The master device issues an interrupt (INTIICA0: end of address transmission) at the falling edge of the 9th clock. The slave device whose address matched the transmitted slave address sets a wait status (SCLA0 = 0) and issues an interrupt (INTIICA0: address match)^{Note}.
- <5> The master device writes the data to transmit to the IICA shift register 0 (IICA0) and releases the wait status that it set by the master device.
- <6> If the slave device releases the wait status (WREL0 = 1), the master device starts transferring data to the slave device.
- <7> After data transfer is completed, because of ACKE0 = 1, the slave device sends an ACK by hardware to the master device. The ACK is detected by the master device (ACKD0 = 1) at the rising edge of the 9th clock.
- <8> The master device and slave device set a wait status (SCLA0 = 0) at the falling edge of the 9th clock, and both the master device and slave device issue an interrupt (INTIICA0: end of transfer).
- <9> The master device writes the data to transmit to the IICA0 register and releases the wait status that it set by the master device.
- <10> The slave device reads the received data and releases the wait status (WREL0 = 1). The master device then starts transferring data to the slave device.
- **Note** If the transmitted address does not match the address of the slave device, the slave device does not return an ACK to the master device (NACK: SDAA0 = 1). The slave device also does not issue the INTIICA0 interrupt (address match) and does not set a wait status. The master device, however, issues the INTIICA0 interrupt (end of address transmission) regardless of whether it receives an ACK or NACK.
- Remark <1> to <15> in Figure 16-32 represent the entire procedure for communicating data using the l²C bus.
 Figure 16-32 (1) Start condition ~ address ~ data shows the processing from <1> to <6>, Figure 16-32
 (2) Address ~ data ~ data shows the processing from <3> to <10>, and Figure 16-32 (3) Data ~ data ~ stop condition shows the processing from <7> to <15>.

(7) LIN/UART Baud Rate Prescaler Register (LBRPn)

Address:	F06C3H	l, F06C2	Ή														
	LBRPn1										LBRPn0						
		15 14 13 12 11 10 9 8 7 6 5 4 3										3	2	1	0		
Value after r	eset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit		Function Setting R/W												R/W			
15 to 0		suming that the value set in this register is L (0 to 65535), the baud rate prescaler divides the quency of the prescaler clock by L + 1.															

Set the LBRPn register when the OMM0 bit in the LMSTn register is 0 (LIN reset mode).

Assuming that the value set in this register is L, the baud rate prescaler divides the frequency of the clock that is selected by the LPRS bits (prescaler clock select bits) in the LWBRn register by L + 1.

The LBRPn register can be accessed in 8-bit units using the following registers.

• Lower 8 bits: LIN/UART baud rate prescaler 0 register (LBRPn0); address F06C2H

- Upper 8 bits: LIN/UART baud rate prescaler 1 register (LBRPn1); address F06C3H
- **Remark** When a sync field reception succeeded in LIN slave mode [auto baud rate], baud rate correction result is set to LBRPn register automatically.

18.3.27 CAN Receive Buffer Register nAH (RMIDHn) (n = 0 to 31)

Address RMIDH0: F03A2H, RMIDH1: F03B2H, RMIDH2: F03C2H, RMIDH3: F03D2H RMIDH4: F03E2H, RMIDH5: F03F2H, RMIDH6: F0402H, RMIDH7: F0412H RMIDH8: F0422H, RMIDH9: F0432H, RMIDH10: F0442H, RMIDH11: F0452H RMIDH12: F0462H, RMIDH13: F0472H, RMIDH14: F0482H, RMIDH15: F0492H RMIDH16: F04A2H, RMIDH17: F04B2H, RMIDH18: F04C2H, RMIDH19: F04D2H RMIDH20: F04E2H, RMIDH21: F04F2H, RMIDH22: F0502H, RMIDH23: F0512H RMIDH24: F0522H, RMIDH25: F0532H, RMIDH26: F0542H, RMIDH27: F0552H RMIDH28: F0562H, RMIDH29: F0572H, RMIDH30: F0582H, RMIDH31: F0592H

The RMIDHn register can be accessed in 16-bit units. In addition, the RMIDHn register can be accessed in 8-bit units as RMIDHnL, RMIDHnH register.

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	RM	RM	_						RI	MID[28:1	16]					
	IDE	RTR														
After Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
15	RMIDE	Receive Buffer IDE	0: Standard ID	R
			1: Extended ID	
14	RMRTR	Receive Buffer RTR	0: Data frame	R
			1: Remote frame	
13	_	Reserved	This bit is always read as 0.	R
12 to 0	RMID[28:16]	Receive Buffer ID Data H	The standard ID or extended ID of received message can	R
			be read.	
			For standard ID, these bits are read as 0.	

This register can be read when the RPAGE bit in the GRWCR register is 1.

RMIDE Bit

This bit indicates the ID format (standard ID or extended ID) of the message stored in the receive buffer.

RMRTR Bit

This bit indicates the frame format (data frame or remote frame) of the message stored in the receive buffer.

• RMID[28:16] Bits

These bits indicate the ID of the message stored in the receive buffer.

18.3.28 CAN Receive Buffer Register nBL (RMTSn) (n = 0 to 31)

Address RMTS0L: F03A4H, RMTS1: F03B4H, RMTS2: F03C4H, RMTS3: F03D4H RMTS4: F03E4H, RMTS5: F03F4H, RMTS6: F0404H, RMTS7: F0414H RMTS8: F0424H, RMTS9: F0434H, RMTS10: F0444H, RMTS11: F0454H RMTS12: F0464H, RMTS13: F0474H, RMTS14: F0484H, RMTS15: F0494H RMTS16: F04A4H, RMTS17: F04B4H, RMTS18: F04C4H, RMTS19: F04D4H RMTS20: F04E4H, RMTS21: F04F4H, RMTS22: F0504H, RMTS23: F0514H RMTS24: F0524H, RMTS25: F0534H, RMTS26: F0544H, RMTS27: F0554H RMTS28: F0564H, RMTS29: F0574H, RMTS30: F0584H, RMTS31: F0594H

The RMTSn register can be accessed in 16-bit units. In addition, the RMTSn register can be accessed in 8-bit units as RMTSnL, RMTSnH register.

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
								RMTS	S[15:0]							
After Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
г <u> </u>																

Bit	Symbol	Bit Name	Description	R/W
15 to 0	RMTS[15:0]	Receive Buffer Timestamp Data	Timestamp value of the received message can be read.	R

This register can be read when the RPAGE bit in the GRWCR register is 1.

• RMTS[15:0] Bits

These bits indicate the timestamp value of the message stored in the receive buffer.

18.3.43 CAN Receive FIFO Access Register mDL (RFDF2m) (m = 0 to 3)

Address RFDF20: F05ACH, RFDF21: F05BCH, RFDF22: F05CCH, RFDF23: F05DCH

The RFDF2m register can be accessed in 16-bit units. In addition, the RFDF2m register can be accessed in 8-bit units as RFDF2mL, RFDF2mH register.

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	RFDB5[7:0] RFDB4[7:0]															
After Rese	et 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	Symb	ol			Bit Nam	e					Desc	ription				R/W
15 to 8	RFDB5	7:0]	Receive	e FIFO E	Buffer Da	ata Byte	5	Dat	Data in the message stored in the receive FIFO buffer							R
7 to 0	RFDB4	7:0]	Receive	FIFO E	Buffer Da	ata Byte	4	can	be read	ł						R

When the RFDLC[3:0] value in the RFPTRm register is smaller than B'1000, data bytes for which no data is set are read as H'00.

This register can be read when the RPAGE bit in the GRWCR register is 1.

The message data stored in the transmit/receive

FIFO buffer can be read.

18.3.56 CANi Transmit/Receive FIFO Access Register kDH (CFDF3k) (i = 0, 1, k = 0, 1)

Address CFDF30: F05EEH, CFDF31: F05FEH

Byte 6

The CFDF3k register can be accessed in 16-bit units. In addition, the CFDF3k register can be accessed in 8-bit units as CFDF3kL, CFDF3kH register.

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	CFDB7[7:0]					CFDB6[7:0]										
After Res	et 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	Bit Symbol Bit Name				Description						R/W					
15 to 8	15 to 8 CFDB7[7:0] Transmit/Receive FIFO Buffer Data		W	When CFM[1:0] value is B'01 (transmit mode):						R/W						
		Byte 7				Se	Set the transmit/receive FIFO buffer data.									
7 to 0	CFDB6[7	36[7:0] Transmit/Receive FIFO Buffer Data			W	nen CFN	/[1:0] va	lue is B	'00 (rec	eive mo	de):		R/W			

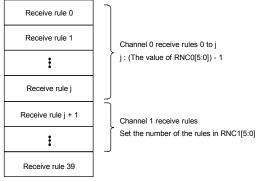
This register is readable when the CFM[1:0] value in the CFCCHk register is B'00 (receive mode). This register should not be read or written when the CFM[1:0] value is B'10 (gatewaymode).

This register can be read/written when the RPAGE bit in the GRWCR register is 1.

18.5 Reception Function

There are two reception types.

• Reception by receive buffers:


Zero to 32 receive buffers can be shared by all channels. Since messages stored in receive buffers are overwritten at each reception, the latest receive data can always be read.

 Reception by receive FIFO buffers and transmit/receive FIFO buffers (receive mode): Four receive FIFO buffers can be shared by all channels and one dedicated transmit/receive FIFO buffer is provided for each channel. The FIFO buffers can hold the number of received messages set by the RFDC[2:0] bits in the RFCCm register and CFDC[2:0] bits in the CFCCLk register, and massages can be read sequentially from the oldest.

18.5.1 Data Processing Using the Receive Rule Table

Data processing using the receive rule table allows selected messages to be stored in the specified buffer. Data processing includes acceptance filter processing, DLC filter processing, routing processing, label addition processing, and mirror function processing.

Receive rule is 40 for the entire module, it can be up to 40 registered in one channel. If receive rules are not set, no message can be received. Figure 18-4 illustrates how receive rules are registered.

Figure 18-4. Entry of Receive Rules

Remark RNC0[5:0], RNC1[5:0]: Bits in the GAFLCFG register

Each receive rule consists of 12 bytes in the GAFLIDLj, GAFLIDHj, GAFLMLj, GAFLMHj, GAFLPLj, and GAFLPHj registers (j = 0 to 39). The GAFLIDLj and GAFLIDHj registers (j = 0 to 39) are used to set ID, IDE bit, RTR bit, and the mirror function, the GAFLMLj and GAFLMHj registers are used to set mask, the GAFLPLj and GAFLPHj registers are used to set label information to be added, DLC value, and storage receive buffer, and storage FIFO buffer.

(1) Acceptance Filter Processing

In the acceptance filter processing, the ID data, IDE bit, and RTR bit in a received message are compared with the ID data, IDE bit, and RTR bit set in the receive rule of the corresponding channel. When all these bits match, the message passes through the acceptance filter processing. The ID data, IDE bit, and RTR bit in a received message which correspond to bits that are set to 0 (bits are not compared) in the GAFLMLj and GAFLMHj registers are not compared and are regarded as matched.

Check begins with the receive rule with the smallest rule number of the corresponding channel. When all the bits to be compared in a received message match the bits set in the receive rule or when all the receive rules are compared without any match, filter processing stops. If there is no matching receive rule, the received message is not stored in the receive buffer or FIFO buffer.

ECCRV0	ECC code inversion bit 0
0	Bit 0 of ECC code not inverted.
1	Bit 0 of ECC code inverted.

DWRV7	Write data inversion bit 7
0	Bit 7 of write data not inverted.
1	Bit 7 of write data inverted.

DWRV6	Write data inversion bit 6
0	Bit 6 of write data not inverted.
1	Bit 6 of write data inverted.

DWRV5	Write data inversion bit 5
0	Bit 5 of write data not inverted.
1	Bit 5 of write data inverted.

DWRV4	Write data inversion bit 4
0	Bit 4 of write data not inverted.
1	Bit 4 of write data inverted.

DWRV3	Write data inversion bit 3
0	Bit 3 of write data not inverted.
1	Bit 3 of write data inverted.

DWR	V2	Write data inversion bit 2
0		Bit 2 of write data not inverted.
1		Bit 2 of write data inverted.

DWRV1	Write data inversion bit 1				
0	Bit 1 of write data not inverted.				
1	Bit 1 of write data inverted.				

DWRV0	Write data inversion bit 0
0	Bit 0 of write data not inverted.
1	Bit 0 of write data inverted.

Cautions 1. Access the ECCDWRVR register in word units.

- 2. Bits 13 to 15 of the ECCDWRVR register are always read as 0. The write value should always be 0.
- 3. All data written to the RAM, including data written to the stack, is inverted. Therefore, all peripheral functions that might rewrite the RAM must be stopped before a write data inversion bit is set. Do not set a write data inversion bit during OCD.

The dedicated flash memory programmer generates the following signals for the RL78/F15. See the manual of PG-FP5, FL-PR5, or E1 on-chip debugging emulator for details.

	Dedicated Flash Memory Programmer						
Signa	I Name	I/O	Pin Function	Pin Name			
PG-FP5, E1 on-chip FL-PR5 debugging emulator							
V	DD	I/O	VDD voltage generation/power monitoring	Vdd			
G	ND	_	Ground	Vss, EVss0 ^{Note 1} , EVss0 ^{Note 2} , REGC ^{Note 3}			
EM	1Vdd	-	Driving power for TOOL0 pin	V _{DD} , EV _{DD0} Note 1, EV _{DD1} Note 2			
/RESET	-	Output	Reset signal	RESET			
– RESET		Output					
– TOOL0		I/O	Transmit/receive signal	TOOL0			
SI/RXD –		I/O	Transmit/receive signal				

Notes 1. 64, 80, 100, 144-pin products only.

- 2. 100, 144-pin products only.
- 3. Connect REGC pin to ground via a capacitor (0.47 to 1 μ F).

Caution The connection destination pins differ depending on the product. For details, see Table 31-1.

34.1.2 Description of operation column

The operation when the instruction is executed is shown in the "Operation" column using the following symbols.

Symbol	Function
A	A register; 8-bit accumulator
х	X register
В	B register
С	C register
D	D register
E	E register
н	H register
L	L register
ES	ES register
CS	CS register
AX	AX register pair; 16-bit accumulator
BC	BC register pair
DE	DE register pair
HL	HL register pair
PC	Program counter
SP	Stack pointer
PSW	Program status word
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
RBS	Register bank select flag
IE	Interrupt request enable flag
0	Memory contents indicated by address or register contents in parentheses
Xн, XL	16-bit registers: X_{H} = higher 8 bits, X_{L} = lower 8 bits
Xs, XH, XL	20-bit registers: $X_s =$ (bits 19 to 16), $X_H =$ (bits 15 to 8), $X_L =$ (bits 7 to 0)
^	Logical product (AND)
V	Logical sum (OR)
¥	Exclusive logical sum (exclusive OR)
_	Inverted data
addr5	16-bit immediate data (even addresses only in 0080H to 00BFH)
addr16	16-bit immediate data
addr20	20-bit immediate data
jdisp8	Signed 8-bit data (displacement value)
jdisp16	Signed 16-bit data (displacement value)

Table 34-2.	Symbols in	"Operation"	Column

35.3 DC Characteristics

35.3.1 Pin Characteristics

For the relationship between the port pins shown in the following tables and the products, refer to **CHAPTER 4 PORT FUNCTIONS**.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note}	Іонт	Per pin for P00 to P07, P10 to P17, P20 to P27, P30 to P32, P35 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P106, P107, P110 to P117, P120, P125 to P127, P130 to P136, P140 to P147, P150 to 157, P160 to P167	$4.0 V \le EV_{DD0} \le 5.5 V$ $2.7 V \le EV_{DD0} \le 4.0 V$			-5.0 -3.0	mA
		Per pin for P10, P12, P14, P30,P120,P140 (special slew rate)	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-0.6	mA
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			-0.2	mA
		Total of P01, P02, P40 to P47, P110 to P117, P120, P125 to P127, P131 to P136, P150 to P153, P160 to P167 (for duty factors ≤ 70% ^{Note 2})	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-20.0	mA
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			-10.0	mA
		Total of P00, P03 to P07,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-30.0	mA
		P10 to P17, P20 to P27, P30 to P32, P35 to P37, P50 to P57, P60 to P67, P70 to P77, P106, P107, P130, P140 to P147, P154 to P157 (for duty factors ≤ 70% ^{Note 2})	2.7 V ≤ EV _{DD0} < 4.0 V			-19.0	mA
		Total of all pins (for duty factors ≤ 70% ^{Note 2})	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			-50.0	mA
			$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			-29.0	mA
	Іон2	Per pin for P33, P34, P80 to P87, P90 to P97, P100 to P105	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1	mA
		Total of all pins (for duty factors ≤ 70% ^{Note 2})	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			-2.0	mA

(T _A = -40 to +105°C, 2,	$7 V \leq EV_{DD0} = EV_{DD1} = V_{DD}$	≤ 5.5 V, Vss = EVss0 = EVss1 = 0 V) (1/4)
(

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from pins EV_{DD0}, EV_{DD1}, and V_{DD} to an output pin.

 These output current values are obtained under the condition that the duty factor is no greater than 70%. The output current values when the duty factor is changed to a value greater than 70% can be calculated from the following expression (when the duty factor is changed to n%).

- Total output current of pins $(I_{OH} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

35.4 AC Characteristics

35.4.1 Basic Operation

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	High-speed on-chip oscillator clock operation		0.03125		1	μs
		High-speed system clock	operation	0.05		1	μs
		PLL clock operation		0.03125		1	μs
		Subsystem clock operation		28.5	30.5	34.5	μs
		Low-speed on-chip osc	Low-speed on-chip oscillator clock operation		66.6		μs
		In self programming mode		0.03125		1	μs
CPU/peripheral hardware clock frequency	fclk			0.03125		66.6	μs
External system clock	fex			1.0		20.0	MHz
frequency	fexs			29		35	kHz
External system clock input	texн, texL			24			ns
high-level width, low-level width	texнs, texls			13.7			μs
TI00 to TI07, TI10 to TI17,	tтн,			1/fмск+10			ns
TI20 to TI27 input high-level width, low-level width	t⊤∟		_				
TO00 to TO07, TO10 to	fто	All TO pins,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$			16	MHz
TO17, TO20 to TO27 output frequency		Normal slew rate, C = 30 pF	$2.7~V \leq EV_{\text{DD0}} < 4.0~V$			8	MHz
		TO01, TO06, TO07, TO11, TO13 only, Special slew rate, C = 30 pF				2	MHz
PCLBUZ0 output frequency	f PCL	Normal slew rate	$4.0~V \le EV_{\text{DD0}} \le 5.5~V$			16	MHz
		C = 30 pF	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
		Special slew rate C = 30 pF				2	MHz
Timer RJ input cycle	tc	TRJIO0		100			ns
Timer RJ input high-level	twн,	TRJIO0		40			ns
width, low-level width	tvv∟						
Interrupt input high-level width, low-level width	tілтн, tintl	INTP0 to INTP15 Note		1			μs
KR0 to KR7 key interrupt tinput low-level width	tkr			250			ns
RESET low-level width	t RSL			10			μs

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{\text{DD0}} = \text{EV}_{\text{DD1}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS0}} = \text{EV}_{\text{SS1}} = 0 \text{ V})$ (1/2)

Note Pins RESET, INTPO to INTP3, INTP12, and INTP13 have noise filters for transient levels lasting less than 100 ns.

Caution Excluding the error in oscillation frequency accuracy.

Remark fmck: Timer array unit operation clock frequency

36.6.5 POR Circuit Characteristics

(T_A = -40 to +125°C, Vss = EVsso = EVss1 = 0 V)

<u>.</u>						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage ^{Note}	VPOR	Power supply rise time	1.48	1.56	1.62	V
	VPDR	Power supply fall time	1.47	1.55	1.61	V
Minimum pulse width	TPW		300			μS
Detection delay time	TPD				350	μS

Note This indicates the POR circuit characteristics, and normal operation is not guaranteed under the condition of less than lower limit operation voltage (2.7 V).

