
E·XFI

Intel - EP20K1000EBC652-2 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

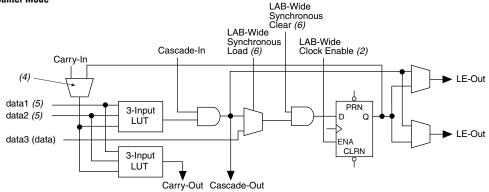
Deta	i	ls

Details	
Product Status	Obsolete
Number of LABs/CLBs	3840
Number of Logic Elements/Cells	38400
Total RAM Bits	327680
Number of I/O	488
Number of Gates	1772000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	652-BGA
Supplier Device Package	652-BGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k1000ebc652-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description


APEX[™] 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and productterm-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, registerintensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device.

APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices.

LAB-Wide Normal Mode (1) Clock Enable (2) Carry-In (3) Cascade-In LE-Out data1 data2 PRN 4-Input D Q LUT data3 LE-Out ENA data4 CLRN Cascade-Out LAB-Wide Arithmetic Mode Clock Enable (2) Carry-In Cascade-In LE-Out PRN data1 Q D 3-Input data2 LUT LE-Out ENA CLRN 3-Input LUT Cascade-Out Carry-Out

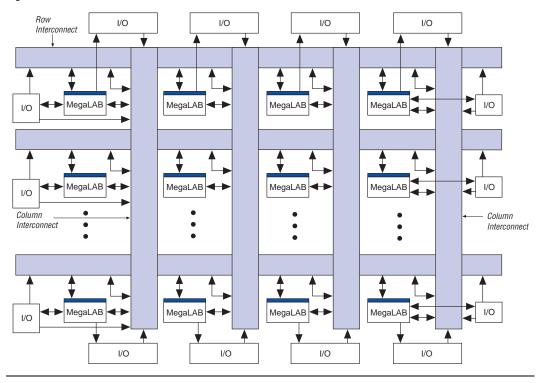
Figure 8. APEX 20K LE Operating Modes

Notes to Figure 8:

- (1) LEs in normal mode support register packing.
- (2) There are two LAB-wide clock enables per LAB.
- (3) When using the carry-in in normal mode, the packed register feature is unavailable.
- (4) A register feedback multiplexer is available on LE1 of each LAB.
- (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB.
- (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.

The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control


Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure.

A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows.

Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures.

Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other.

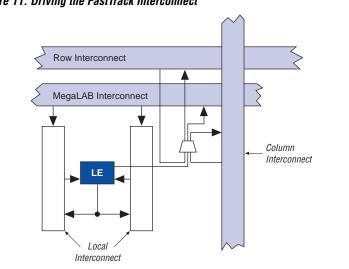
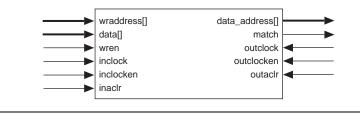



Figure 11. Driving the FastTrack Interconnect

APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow[™] interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect.

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

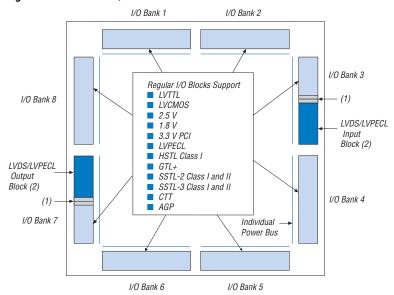
The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required. Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software.

Table 10. APEX 20K Programmable Delay Chains					
Programmable Delays Quartus II Logic Option					
Input pin to core delay	Decrease input delay to internal cells				
Input pin to input register delay	Decrease input delay to input register				
Core to output register delay Decrease input delay to output register					
Output register t _{CO} delay Increase delay to output pin					

The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices.


The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains					
Programmable Delays Quartus II Logic Option					
Input Pin to Core Delay	Decrease input delay to internal cells				
Input Pin to Input Register Delay	Decrease input delay to input registers				
Core to Output Register Delay	Decrease input delay to output register				
Output Register t _{CO} Delay	Increase delay to output pin				
Clock Enable Delay	Increase clock enable delay				

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Figure 29. APEX 20KE I/O Banks

Notes to Figure 29:

- For more information on placing I/O pins in LVDS blocks, refer to the Guidelines for Using LVDS Blocks section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V.

Power Sequencing & Hot Socketing

Because APEX 20K and APEX 20KE devices can be used in a mixedvoltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any order.

For more information, please refer to the "Power Sequencing Considerations" section in the *Configuring APEX 20KE & APEX 20KC Devices* chapter of the *Configuration Devices Handbook*.

Signals can be driven into APEX 20K devices before and during power-up without damaging the device. In addition, APEX 20K devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20K and APEX 20KE devices operate as specified by the user.

The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices.

Table 20. APEX 20K Boundary-Scan Register Length				
Device	Boundary-Scan Register Length			
EP20K30E	420			
EP20K60E	624			
EP20K100	786			
EP20K100E	774			
EP20K160E	984			
EP20K200	1,176			
EP20K200E	1,164			
EP20K300E	1,266			
EP20K400	1,536			
EP20K400E	1,506			
EP20K600E	1,806			
EP20K1000E	2,190			
EP20K1500E	1 (1)			

Note to Table 20:

(1) This device does not support JTAG boundary scan testing.

Table 2	Table 28. APEX 20KE Device Recommended Operating Conditions						
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	1.71 (1.71)	1.89 (1.89)	V		
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V		
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V		
	Supply voltage for output buffers, 1.8-V operation	(3), (4)	1.71 (1.71)	1.89 (1.89)	V		
VI	Input voltage	(5), (6)	-0.5	4.0	V		
Vo	Output voltage		0	V _{CCIO}	V		
ТJ	Junction temperature	For commercial use	0	85	°C		
		For industrial use	-40	100	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level LVTTL, CMOS, or 3.3-V PCI input voltage		1.7, 0.5 × V _{CCIO} (10)		4.1	V
V _{IL}	Low-level LVTTL, CMOS, or 3.3-V PCI input voltage		-0.5		0.8, 0.3 × V _{CCIO} (10)	V
V _{OH}	3.3-V high-level LVTTL output voltage	I _{OH} = -12 mA DC, V _{CCIO} = 3.00 V <i>(11)</i>	2.4			۷
	3.3-V high-level LVCMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(11)</i>	V _{CCIO} – 0.2			V
	3.3-V high-level PCI output voltage	I _{OH} = -0.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (<i>11</i>)	$0.9 imes V_{CCIO}$			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (11)	2.1			V
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V <i>(11)</i>	2.0			۷
	I _{OH} = -2 mA DC, V _{CCIO} = 2.30 V <i>(11)</i>	1.7			v	
V _{OL}	3.3-V low-level LVTTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V <i>(12)</i>			0.4	V
	3.3-V low-level LVCMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (<i>12</i>)			0.2	V
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (<i>12</i>)			$0.1 \times V_{CCIO}$	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.7	V
l _l	Input pin leakage current	V _I = 4.1 to -0.5 V (13)	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	V _O = 4.1 to -0.5 V (13)	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -1 speed grade		10		mA
		V ₁ = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (14)	20		50	kΩ
	before and during configuration	V _{CCIO} = 2.375 V (14)	30		80	kΩ
		V _{CCIO} = 1.71 V (14)	60		150	kΩ

Table 36. APEX 20KE Routing Timing Microparameters Note (1)				
Symbol Parameter				
t _{F1-4}	Fanout delay using Local Interconnect			
t _{F5-20}	Fanout delay estimate using MegaLab Interconnect			
t _{F20+}	Fanout delay estimate using FastTrack Interconnect			

Note to Table 36:

 These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

Table 37. APEX 20KE Functional Timing Microparameters				
Symbol	Parameter			
ТСН	Minimum clock high time from clock pin			
TCL	Minimum clock low time from clock pin			
TCLRP	LE clear Pulse Width			
TPREP	LE preset pulse width			
TESBCH	Clock high time for ESB			
TESBCL	Clock low time for ESB			
TESBWP	Write pulse width			
TESBRP	Read pulse width			

Table 37. APEX 20KE Functional Timing Microparameters

Tables 38 and 39 describe the APEX 20KE external timing parameters.

Table 38. APEX 20KE External Timing Parameters Note (1)				
Symbol	Clock Parameter	Conditions		
t _{INSU}	Setup time with global clock at IOE input register			
t _{INH}	Hold time with global clock at IOE input register			
t _{оитсо}	Clock-to-output delay with global clock at IOE output register C1 = 10 p			
t _{INSUPLL}	Setup time with PLL clock at IOE input register			
t _{INHPLL}	Hold time with PLL clock at IOE input register			
t _{OUTCOPLL}	Clock-to-output delay with PLL clock at IOE output register	C1 = 10 pF		

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Мах	Min	Мах	
t _{INSU} (1)	2.3		2.8		3.2		ns
t _{INH} (1)	0.0		0.0		0.0		ns
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns
t _{INSU} (2)	1.1		1.2		-		ns
t _{INH} (2)	0.0		0.0		-		ns
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	_	4.8	ns

Table 44. EP20K100 External Bidirectional Timing Parameters							
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	1
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
toutcobidir (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns
t _{insubidir} (2)	1.0		1.2		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
toutcobidir (2)	0.5	2.7	0.5	3.1	-	-	ns
t _{XZBIDIR} (2)		4.3		5.0		-	ns
t _{ZXBIDIR} (2)		4.3		5.0		-	ns

Table 45. EP20K200 External Timing Parameters										
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade				
	Min	Max	Min	Max	Min	Max				
t _{INSU} (1)	1.9		2.3		2.6		ns			
t _{INH} (1)	0.0		0.0		0.0		ns			
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns			
t _{INSU} (2)	1.1		1.2		-		ns			
t _{INH} (2)	0.0		0.0		-		ns			
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns			

Table 69. EP2	Table 69. EP20K160E f _{MAX} Routing Delays											
Symbol	-	1		-2	-;	3	Unit					
	Min	Max	Min	Max	Min	Max						
t _{F1-4}		0.25		0.26		0.28	ns					
t _{F5-20}		1.00		1.18		1.35	ns					
t _{F20+}		1.95		2.19		2.30	ns					

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.34		1.43		1.55		ns
t _{CL}	1.34		1.43		1.55		ns
t _{CLRP}	0.18		0.19		0.21		ns
t _{PREP}	0.18		0.19		0.21		ns
t _{ESBCH}	1.34		1.43		1.55		ns
t _{ESBCL}	1.34		1.43		1.55		ns
t _{ESBWP}	1.15		1.45		1.73		ns
t _{ESBRP}	0.93		1.15		1.38		ns

Table 71. EP2	OK160E Exter	nal Timing Pa	nameters					
Symbol	-1		-	-2		-3		
	Min	Max	Min	Max	Min	Max		
t _{INSU}	2.23		2.34		2.47		ns	
t _{INH}	0.00		0.00		0.00		ns	
t _{outco}	2.00	5.07	2.00	5.59	2.00	6.13	ns	
t _{INSUPLL}	2.12		2.07		-		ns	
t _{INHPLL}	0.00		0.00		-		ns	
toutcopll	0.50	3.00	0.50	3.35	-	-	ns	

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.19		0.26		0.35		ns
t _{PREP}	0.19		0.26		0.35		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.25		1.71		2.28		ns
t _{ESBRP}	1.01		1.38		1.84		ns

Symbol	-1		-2		-3	Unit	
	Min	Мах	Min	Max	Min	Max	
t _{INSU}	2.31		2.44		2.57		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	5.29	2.00	5.82	2.00	6.24	ns
t _{insupll}	1.76		1.85		-		ns
t _{INHPLL}	0.00		0.00		-		ns
toutcopll	0.50	2.65	0.50	2.95	-	-	ns

Symbol	-1		-2		-	Unit	
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	2.77		2.85		3.11		ns
t _{inhbidir}	0.00		0.00		0.00		ns
toutcobidir	2.00	5.29	2.00	5.82	2.00	6.24	ns
t _{xzbidir}		7.59		8.30		9.09	ns
t _{zxbidir}		7.59		8.30		9.09	ns
t _{insubidirpll}	2.50		2.76		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.65	0.50	2.95	-	-	ns
t _{xzbidirpll}		5.00		5.43		-	ns
t _{ZXBIDIRPLL}		5.00		5.43		-	ns

Tables 85 through 90 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K400E APEX 20KE devices.

Table 85. EP20K400E f _{MAX} LE Timing Microparameters										
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Spee	d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.23		0.23		0.23		ns			
t _H	0.23		0.23		0.23		ns			
t _{CO}		0.25		0.29		0.32	ns			
t _{LUT}		0.70		0.83		1.01	ns			

Tables 97 through 102 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices.

Table 97. EP20K1000E f _{MAX} LE Timing Microparameters										
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Spee	d Grade	Unit			
	Min	Мах	Min	Max	Min	Max				
t _{SU}	0.25		0.25		0.25		ns			
t _H	0.25		0.25		0.25		ns			
t _{CO}		0.28		0.32		0.33	ns			
t _{LUT}		0.80		0.95		1.13	ns			

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed	Unit	
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.28		1.51		1.65		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Table 107. EP20K1500E External Timing Parameters											
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade					
	Min	Max	Min	Max	Min	Max					
tINSU	3.09		3.30		3.58		ns				
t _{INH}	0.00		0.00		0.00		ns				
t _{outco}	2.00	6.18	2.00	6.81	2.00	7.36	ns				
t _{INSUPLL}	1.94		2.08		-		ns				
t _{INHPLL}	0.00		0.00		-		ns				
toutcopll	0.50	2.67	0.50	2.99	-	-	ns				

Table 110. Selectab	ole I/O Standa	ord Output De	lays				
Symbol	-1 Spee	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	Min
LVCMOS		0.00		0.00		0.00	ns
LVTTL		0.00		0.00		0.00	ns
2.5 V		0.00		0.09		0.10	ns
1.8 V		2.49		2.98		3.03	ns
PCI		-0.03		0.17		0.16	ns
GTL+		0.75		0.75		0.76	ns
SSTL-3 Class I		1.39		1.51		1.50	ns
SSTL-3 Class II		1.11		1.23		1.23	ns
SSTL-2 Class I		1.35		1.48		1.47	ns
SSTL-2 Class II		1.00		1.12		1.12	ns
LVDS		-0.48		-0.48		-0.48	ns
CTT		0.00		0.00		0.00	ns
AGP		0.00		0.00		0.00	ns

Power Consumption

To estimate device power consumption, use the interactive power calculator on the Altera web site at **http://www.altera.com**.

Configuration & Operation

The APEX 20K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Before and during device configuration, all I/O pins are pulled to $\rm V_{\rm CCIO}$ by a built-in weak pull-up resistor.