
E·XFL

Altera - EP20K1000EFC672-1X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	3840
Number of Logic Elements/Cells	38400
Total RAM Bits	327680
Number of I/O	508
Number of Gates	1772000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA, FCBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep20k1000efc672-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations

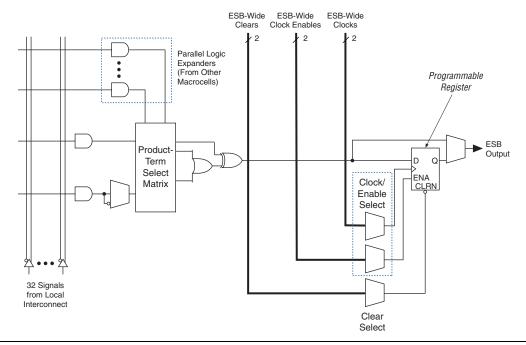
- Altera MegaCore[®] functions and Altera Megafunction Partners Program (AMPPSM) megafunctions
- NativeLink[™] integration with popular synthesis, simulation, and timing analysis tools
- Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
- Supports popular revision-control software packages including PVCS, Revision Control System (RCS), and Source Code Control System (SCCS)

 Table 4. APEX 20K QFP, BGA & PGA Package Options & I/O Count
 Notes (1), (2)

Device	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP	356-Pin BGA	652-Pin BGA	655-Pin PGA
EP20K30E	92	125				
EP20K60E	92	148	151	196		
EP20K100	101	159	189	252		
EP20K100E	92	151	183	246		
EP20K160E	88	143	175	271		
EP20K200		144	174	277		
EP20K200E		136	168	271	376	
EP20K300E			152		408	
EP20K400					502	502
EP20K400E					488	
EP20K600E					488	
EP20K1000E					488	
EP20K1500E					488	

The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control


Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

Figure 14. APEX 20K Macrocell

For registered functions, each macrocell register can be programmed individually to implement D, T, JK, or SR operation with programmable clock control. The register can be bypassed for combinatorial operation. During design entry, the designer specifies the desired register type; the Quartus II software then selects the most efficient register operation for each registered function to optimize resource utilization. The Quartus II software or other synthesis tools can also select the most efficient register operation automatically when synthesizing HDL designs.

Each programmable register can be clocked by one of two ESB-wide clocks. The ESB-wide clocks can be generated from device dedicated clock pins, global signals, or local interconnect. Each clock also has an associated clock enable, generated from the local interconnect. The clock and clock enable signals are related for a particular ESB; any macrocell using a clock also uses the associated clock enable.

If both the rising and falling edges of a clock are used in an ESB, both ESB-wide clock signals are used.

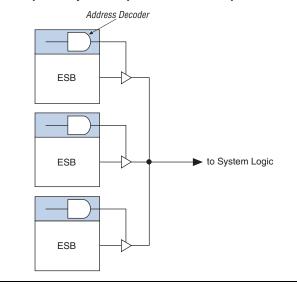
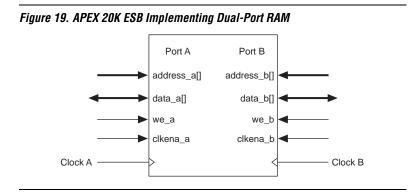
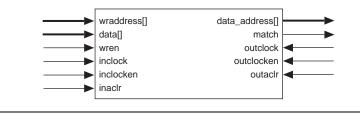




Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required. APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

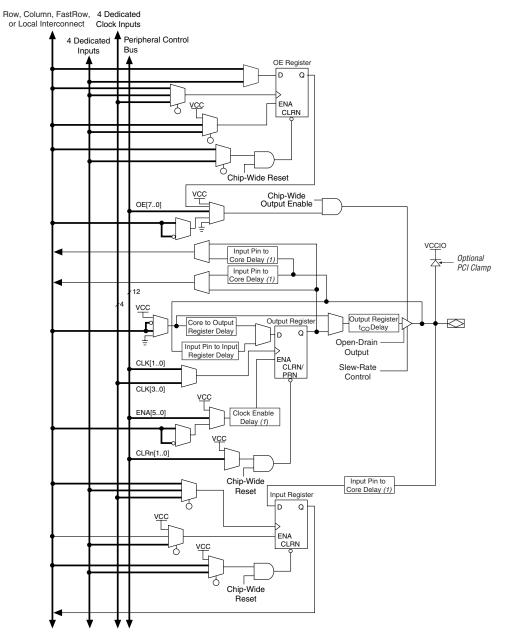

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains						
Programmable Delays	Quartus II Logic Option					
Input Pin to Core Delay	Decrease input delay to internal cells					
Input Pin to Input Register Delay	Decrease input delay to input registers					
Core to Output Register Delay	Decrease input delay to output register					
Output Register t _{CO} Delay	Increase delay to output pin					
Clock Enable Delay	Increase clock enable delay					

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Figure 26. APEX 20KE Bidirectional I/O Registers N

Notes to Figure 26:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Advanced I/O Standard Support

APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II.

For more information on I/O standards supported by APEX 20KE devices, see *Application Note* 117 (*Using Selectable I/O Standards in Altera Devices*).

The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support.

Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used.

Table 14. Multiplication Factor Combin	Table 14. Multiplication Factor Combinations				
Clock 1	Clock 2				
×1	×1				
×1, ×2	×2				
×1, ×2, ×4	×4				

APEX 20KE ClockLock Feature

APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KE PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM.

Clock Multiplication

The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where *m* and *k* range from 2 to 160, and *n* and *v* range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

Clock Phase & Delay Adjustment

The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices.

Notes to Table 16:

- (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The *f_{CLKDEV}* parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation.

Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices.

Table 17. AP	EX 20KE ClockLock & ClockBoost	Parameters /	Vote (1)			
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
t _R	Input rise time				5	ns
t _F	Input fall time				5	ns
t _{INDUTY}	Input duty cycle		40		60	%
t _{INJITTER}	Input jitter peak-to-peak				2% of input period	peak-to- peak
t _{OUTJITTER}	Jitter on ClockLock or ClockBoost- generated clock				0.35% of output period	RMS
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		45		55	%
t _{LOCK} (2) _, (3)	Time required for ClockLock or ClockBoost to acquire lock				40	μs

Figures 38 and 39 show the asynchronous and synchronous timing waveforms, respectively, for the ESB macroparameters in Table 31.

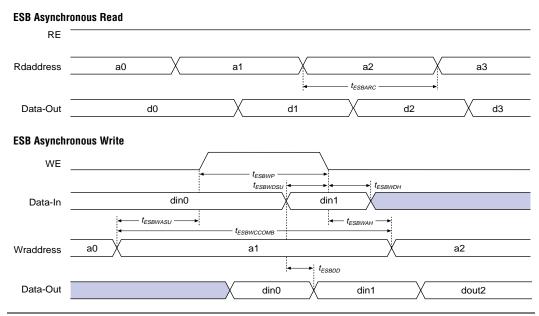


Figure 38. ESB Asynchronous Timing Waveforms

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Units
					_		-
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.1		0.3		0.6		ns
t _H	0.5		0.8		0.9		ns
t _{CO}		0.1		0.4		0.6	ns
t _{LUT}		1.0		1.2		1.4	ns
t _{ESBRC}		1.7		2.1		2.4	ns
t _{ESBWC}		5.7		6.9		8.1	ns
t _{ESBWESU}	3.3		3.9		4.6		ns
t _{ESBDATASU}	2.2		2.7		3.1		ns
t _{ESBDATAH}	0.6		0.8		0.9		ns
t _{ESBADDRSU}	2.4		2.9		3.3		ns
t _{ESBDATACO1}		1.3		1.6		1.8	ns
t _{ESBDATACO2}		2.5		3.1		3.6	ns
t _{ESBDD}		2.5		3.3		3.6	ns
t _{PD}		2.5		3.1		3.6	ns
t _{PTERMSU}	1.7		2.1		2.4		ns
t _{PTERMCO}		1.0		1.2		1.4	ns
t _{F1-4}		0.4		0.5		0.6	ns
t _{F5-20}		2.6		2.8		2.9	ns
t _{F20+}		3.7		3.8		3.9	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns
t _{CLRP}	0.5		0.6		0.8		ns
t _{PREP}	0.5		0.5		0.5		ns
t _{ESBCH}	2.0		2.5		3.0		ns
t _{ESBCL}	2.0		2.5		3.0		ns
t _{ESBWP}	1.5		1.9		2.2		ns
t _{ESBRP}	1.0		1.2		1.4		ns

Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices.

Table 55. EP2	OK60E f _{max} L	E Timing Micr	oparameters					
Symbol	-1 -2 -3					-1		Unit
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.17		0.15		0.16		ns	
t _H	0.32		0.33		0.39		ns	
t _{CO}		0.29		0.40		0.60	ns	
t _{LUT}		0.77		1.07		1.59	ns	

Symbol	-'	1	-	2	-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	2.00		2.00		2.00		ns
t _{CL}	2.00		2.00		2.00		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	2.00		2.00		2.00		ns
t _{ESBCL}	2.00		2.00		2.00		ns
t _{ESBWP}	1.29		1.53		1.66		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Table 65. EP20K100E External Timing Parameters										
Symbol	-	-1		-2		-3				
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.23		2.32		2.43		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	4.86	2.00	5.35	2.00	5.84	ns			
t _{INSUPLL}	1.58		1.66		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
t _{outcopll}	0.50	2.96	0.50	3.29	-	-	ns			

Symbol	-	1	-	2	-	Unit	
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	2.74		2.96		3.19		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{оитсовідія}	2.00	4.86	2.00	5.35	2.00	5.84	ns
t _{xzbidir}		5.00		5.48		5.89	ns
t _{zxbidir}		5.00		5.48		5.89	ns
t _{insubidirpll}	4.64		5.03		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
t _{outcobidirpll}	0.50	2.96	0.50	3.29	-	-	ns
t _{xzbidirpll}		3.10		3.42		-	ns
t _{ZXBIDIRPLL}		3.10		3.42		-	ns

Symbol	-	1	-	2	-	Unit	
	Min	Max	Min	Мах	Min	Max	
t _{insubidir}	2.86		3.24		3.54		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	5.07	2.00	5.59	2.00	6.13	ns
t _{xzbidir}		7.43		8.23		8.58	ns
tzxbidir		7.43		8.23		8.58	ns
t _{insubidirpll}	4.93		5.48		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	3.00	0.50	3.35	-	-	ns
t _{XZBIDIRPLL}		5.36		5.99		-	ns
t _{ZXBIDIRPLL}		5.36		5.99		-	ns

Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 73. EP20K200E f _{MAX} LE Timing Microparameters										
Symbol	-1 -2 -				3	Unit				
	Min	Max	Min	Max	Min	Мах				
t _{SU}	0.23		0.24		0.26		ns			
t _H	0.23		0.24		0.26		ns			
t _{CO}		0.26		0.31		0.36	ns			
t _{LUT}		0.70		0.90		1.14	ns			

Altera Corporation

Symbol	-	1	-	2	-	3	Unit
	Min	Max	Min	Max	Min	Max	1
t _{ESBARC}		1.68		2.06		2.24	ns
t _{ESBSRC}		2.27		2.77		3.18	ns
t _{ESBAWC}		3.10		3.86		4.50	ns
t _{ESBSWC}		2.90		3.67		4.21	ns
t _{ESBWASU}	0.55		0.67		0.74		ns
t _{ESBWAH}	0.36		0.46		0.48		ns
t _{ESBWDSU}	0.69		0.83		0.95		ns
t _{ESBWDH}	0.36		0.46		0.48		ns
t _{ESBRASU}	1.61		1.90		2.09		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.42		1.71		2.01		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.06		-0.07		0.05		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.11		0.13		0.31		ns
t _{ESBRADDRSU}	0.18		0.23		0.39		ns
t _{ESBDATACO1}		1.09		1.35		1.51	ns
t _{ESBDATACO2}		2.19		2.75		3.22	ns
t _{ESBDD}		2.75		3.41		4.03	ns
t _{PD}		1.58		1.97		2.33	ns
t _{PTERMSU}	1.00		1.22		1.51		ns
t _{PTERMCO}		1.10		1.37		1.09	ns

Table 75. EP2	Table 75. EP20K200E f _{MAX} Routing Delays												
Symbol	-1		-1 -2		-:	3	Unit						
	Min	Max	Min	Max	Min	Max							
t _{F1-4}		0.25		0.27		0.29	ns						
t _{F5-20}		1.02		1.20		1.41	ns						
t _{F20+}		1.99		2.23		2.53	ns						

Symbol	-1		-2			Unit	
	Min	Max	Min	Max	Min	Max	-
t _{ESBARC}		1.79		2.44		3.25	ns
t _{ESBSRC}		2.40		3.12		4.01	ns
t _{ESBAWC}		3.41		4.65		6.20	ns
t _{ESBSWC}		3.68		4.68		5.93	ns
t _{ESBWASU}	1.55		2.12		2.83		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.71		2.33		3.11		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.72		2.34		3.13		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.63		2.36		3.28		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.07		0.39		0.80		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.27		0.67		1.17		ns
t _{ESBRADDRSU}	0.34		0.75		1.28		ns
t _{ESBDATACO1}		1.03		1.20		1.40	ns
t _{ESBDATACO2}		2.33		3.18		4.24	ns
t _{ESBDD}		3.41		4.65		6.20	ns
t _{PD}		1.68		2.29		3.06	ns
t _{PTERMSU}	0.96		1.48		2.14		ns
t _{PTERMCO}		1.05		1.22		1.42	ns

Table 81. EP2	OK300E f _{MAX} I	Routing Delays	S				
Symbol	-	1	-2		-;	3	Unit
	Min	Max	Min	Max	Min	Мах	
t _{F1-4}		0.22		0.24		0.26	ns
t _{F5-20}		1.33		1.43		1.58	ns
t _{F20+}		3.63		3.93		4.35	ns

Altera Corporation

Symbol	-	-1		-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.19		0.26		0.35		ns
t _{PREP}	0.19		0.26		0.35		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.25		1.71		2.28		ns
t _{ESBRP}	1.01		1.38		1.84		ns

Symbol	-1		-2		-3	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.31		2.44		2.57		ns
t _{INH}	0.00		0.00		0.00		ns
tоитсо	2.00	5.29	2.00	5.82	2.00	6.24	ns
t _{insupll}	1.76		1.85		-		ns
t _{INHPLL}	0.00		0.00		-		ns
^t outcopll	0.50	2.65	0.50	2.95	-	-	ns

Symbol	-1		-:	2	-	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{insubidir}	2.77		2.85		3.11		ns
t _{inhbidir}	0.00		0.00		0.00		ns
toutcobidir	2.00	5.29	2.00	5.82	2.00	6.24	ns
t _{XZBIDIR}		7.59		8.30		9.09	ns
t _{zxbidir}		7.59		8.30		9.09	ns
t _{insubidirpll}	2.50		2.76		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.65	0.50	2.95	-	-	ns
t _{XZBIDIRPLL}		5.00		5.43		-	ns
t _{ZXBIDIRPLL}		5.00		5.43		-	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	Unit	
	Min	Max	Min	Max	Min	Мах	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.28		1.51		1.65		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Table 107. EP20K1500E External Timing Parameters											
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed	Unit					
	Min	Max	Min	Max	Min	Max					
tINSU	3.09		3.30		3.58		ns				
t _{INH}	0.00		0.00		0.00		ns				
t _{outco}	2.00	6.18	2.00	6.81	2.00	7.36	ns				
t _{INSUPLL}	1.94		2.08		-		ns				
t _{INHPLL}	0.00		0.00		-		ns				
toutcopll	0.50	2.67	0.50	2.99	-	-	ns				