Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 3840 | | Number of Logic Elements/Cells | 38400 | | Total RAM Bits | 327680 | | Number of I/O | 508 | | Number of Gates | 1772000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 672-BBGA | | Supplier Device Package | 672-FBGA (27x27) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k1000efc672-2b | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # General Description APEXTM 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and product-term-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, register-intensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device. APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices. Figure 9. APEX 20K Interconnect Structure A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure. A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows. Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures. Figure 14. APEX 20K Macrocell For registered functions, each macrocell register can be programmed individually to implement D, T, JK, or SR operation with programmable clock control. The register can be bypassed for combinatorial operation. During design entry, the designer specifies the desired register type; the Quartus II software then selects the most efficient register operation for each registered function to optimize resource utilization. The Quartus II software or other synthesis tools can also select the most efficient register operation automatically when synthesizing HDL designs. Each programmable register can be clocked by one of two ESB-wide clocks. The ESB-wide clocks can be generated from device dedicated clock pins, global signals, or local interconnect. Each clock also has an associated clock enable, generated from the local interconnect. The clock and clock enable signals are related for a particular ESB; any macrocell using a clock also uses the associated clock enable. If both the rising and falling edges of a clock are used in an ESB, both ESB-wide clock signals are used. Figure 18. Deep Memory Block Implemented with Multiple ESBs The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19. Figure 19. APEX 20K ESB Implementing Dual-Port RAM # Implementing Logic in ROM In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate. ## **Programmable Speed/Power Control** APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo BitTM option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current. Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power. # I/O Structure The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently. The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Figure 25. APEX 20K Bidirectional I/O Registers Note (1) Note to Figure 25: (1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. #### Notes to Table 16: - (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter. - (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration. - (4) The t_{IITTER} specification is measured under long-term observation. Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices. | Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1) | | | | | | | | |--|---|------------|-----|-----|------------------------|------------------|--| | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | | | t _R | Input rise time | | | | 5 | ns | | | t _F | Input fall time | | | | 5 | ns | | | t _{INDUTY} | Input duty cycle | | 40 | | 60 | % | | | t _{INJITTER} | Input jitter peak-to-peak | | | | 2% of input period | peak-to-
peak | | | t _{OUTJITTER} | Jitter on ClockLock or ClockBoost-
generated clock | | | | 0.35% of output period | RMS | | | t _{OUTDUTY} | Duty cycle for ClockLock or ClockBoost-generated clock | | 45 | | 55 | % | | | t _{LOCK} (2), (3) | Time required for ClockLock or ClockBoost to acquire lock | | | | 40 | μs | | # IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration. | Table 19. APEX 20K JT | Table 19. APEX 20K JTAG Instructions | | | | | | |----------------------------|--|--|--|--|--|--| | JTAG Instruction | Description | | | | | | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer. | | | | | | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | | | BYPASS (1) | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | | | | | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | | | | | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | | | | | | ICR Instructions | Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster TM or ByteBlasterMV TM download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor. | | | | | | | SignalTap Instructions (1) | Monitors internal device operation with the SignalTap embedded logic analyzer. | | | | | | ### Note to Table 19: (1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions. The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices. | Table 20. APEX 20K Boundary-Scan Register Length | | | | | | |--|-------------------------------|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | EP20K30E | 420 | | | | | | EP20K60E | 624 | | | | | | EP20K100 | 786 | | | | | | EP20K100E | 774 | | | | | | EP20K160E | 984 | | | | | | EP20K200 | 1,176 | | | | | | EP20K200E | 1,164 | | | | | | EP20K300E | 1,266 | | | | | | EP20K400 | 1,536 | | | | | | EP20K400E | 1,506 | | | | | | EP20K600E | 1,806 | | | | | | EP20K1000E | 2,190 | | | | | | EP20K1500E | 1 (1) | | | | | ### Note to Table 20: (1) This device does not support JTAG boundary scan testing. | | | Pevice Recommended Operating Conditio | 1 | ,
B# | | |--------------------|---|---------------------------------------|------------------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (4), (5) | 2.375
(2.375) | 2.625
(2.625) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (4), (5) | 3.00 (3.00) | 3.60 (3.60) | ٧ | | | Supply voltage for output buffers, 2.5-V operation | (4), (5) | 2.375
(2.375) | 2.625
(2.625) | V | | V _I | Input voltage | (3), (6) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _J | Junction temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------|--------------------------------------|--|----------------------------------|-----|----------------------------------|------| | V _{IH} | High-level input voltage | | 1.7, 0.5 × V _{CCIO} (9) | | 5.75 | ٧ | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8, 0.3 × V _{CCIO} (9) | V | | V _{OH} | 3.3-V high-level TTL output voltage | I _{OH} = -8 mA DC,
V _{CCIO} = 3.00 V (10) | 2.4 | | | ٧ | | | 3.3-V high-level CMOS output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 3.00 V (10) | V _{CCIO} - 0.2 | | | V | | | 3.3-V high-level PCI output voltage | $I_{OH} = -0.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$
(10) | 0.9 × V _{CCIO} | | | V | | | 2.5-V high-level output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 2.30 V (10) | 2.1 | | | ٧ | | | | I _{OH} = -1 mA DC,
V _{CCIO} = 2.30 V (10) | 2.0 | | | ٧ | | | | I _{OH} = -2 mA DC,
V _{CCIO} = 2.30 V (10) | 1.7 | | | ٧ | For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).* | Table 30. APEX 20KE Device Capacitance Note (15) | | | | | | | | | |--|--|-------------------------------------|-----|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | #### Notes to Tables 27 through 30: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle. Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10% - (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60. - (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V. - (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL. - (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (13) This value is specified for normal device operation. The value may vary during power-up. - (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}. - (15) Capacitance is sample-tested only. Figure 33 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance on APEX 20K devices. ### Figure 39. ESB Synchronous Timing Waveforms ### **ESB Synchronous Read** ### ESB Synchronous Write (ESB Output Registers Used) Figure 40 shows the timing model for bidirectional I/O pin timing. Note to Tables 32 and 33: (1) These timing parameters are sample-tested only. Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model. | Table 34. APEX 20KE LE Timing Microparameters | | | | | | | |---|-------------------------------------|--|--|--|--|--| | Symbol Parameter | | | | | | | | t _{SU} | LE register setup time before clock | | | | | | | t _H | LE register hold time after clock | | | | | | | t _{CO} | LE register clock-to-output delay | | | | | | | t _{LUT} | LUT delay for data-in to data-out | | | | | | | Symbol | Parameter | |-------------------------|--| | t _{ESBARC} | ESB Asynchronous read cycle time | | t _{ESBSRC} | ESB Synchronous read cycle time | | t _{ESBAWC} | ESB Asynchronous write cycle time | | t _{ESBSWC} | ESB Synchronous write cycle time | | t _{ESBWASU} | ESB write address setup time with respect to WE | | t _{ESBWAH} | ESB write address hold time with respect to WE | | t _{ESBWDSU} | ESB data setup time with respect to WE | | t _{ESBWDH} | ESB data hold time with respect to WE | | t _{ESBRASU} | ESB read address setup time with respect to RE | | t _{ESBRAH} | ESB read address hold time with respect to RE | | t _{ESBWESU} | ESB WE setup time before clock when using input register | | t _{ESBWEH} | ESB WE hold time after clock when using input register | | t _{ESBDATASU} | ESB data setup time before clock when using input register | | t _{ESBDATAH} | ESB data hold time after clock when using input register | | t _{ESBWADDRSU} | ESB write address setup time before clock when using input registers | | t _{ESBRADDRSU} | ESB read address setup time before clock when using input registers | | t _{ESBDATACO1} | ESB clock-to-output delay when using output registers | | t _{ESBDATACO2} | ESB clock-to-output delay without output registers | | t _{ESBDD} | ESB data-in to data-out delay for RAM mode | | t _{PD} | ESB Macrocell input to non-registered output | | t _{PTERMSU} | ESB Macrocell register setup time before clock | | t _{PTERMCO} | ESB Macrocell register clock-to-output delay | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-----------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.1 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCOBIDIR} (2) | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 47. EP20K400 External Timing Parameters | | | | | | | | | |---|----------------|-----|----------------|-----|----------------|-----|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{OUTCO} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | | t _{INSU} (2) | 0.4 | | 1.0 | | - | | ns | | | t _{INH} (2) | 0.0 | | 0.0 | | _ | | ns | | | t _{OUTCO} (2) | 0.5 | 3.1 | 0.5 | 4.1 | _ | _ | ns | | | Table 48. EP20K400 External Bidirections | I Timina | Parameters 1 4 1 | |--|----------|------------------| |--|----------|------------------| | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spe | ed Grade | Unit | |-----------------------------|---------|---------|---------|---------|--------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | t _{XZBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{ZXBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{INSUBIDIR} (2) | 0.5 | | 1.0 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir (2) | 0.5 | 3.1 | 0.5 | 4.1 | - | - | ns | | t _{XZBIDIR} (2) | | 6.2 | | 7.6 | | - | ns | | t _{ZXBIDIR} (2) | | 6.2 | | 7.6 | | _ | ns | | Symbol | - | 1 | - | 2 | -; | 3 | Unit | |-------------------------|-------|------|-------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.65 | | 2.02 | | 2.11 | ns | | t _{ESBSRC} | | 2.21 | | 2.70 | | 3.11 | ns | | t _{ESBAWC} | | 3.04 | | 3.79 | | 4.42 | ns | | t _{ESBSWC} | | 2.81 | | 3.56 | | 4.10 | ns | | t _{ESBWASU} | 0.54 | | 0.66 | | 0.73 | | ns | | t _{ESBWAH} | 0.36 | | 0.45 | | 0.47 | | ns | | t _{ESBWDSU} | 0.68 | | 0.81 | | 0.94 | | ns | | t _{ESBWDH} | 0.36 | | 0.45 | | 0.47 | | ns | | t _{ESBRASU} | 1.58 | | 1.87 | | 2.06 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.01 | | ns | | t _{ESBWESU} | 1.41 | | 1.71 | | 2.00 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.02 | | -0.03 | | 0.09 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.14 | | 0.17 | | 0.35 | | ns | | t _{ESBRADDRSU} | 0.21 | | 0.27 | | 0.43 | | ns | | t _{ESBDATACO1} | | 1.04 | | 1.30 | | 1.46 | ns | | t _{ESBDATACO2} | | 2.15 | | 2.70 | | 3.16 | ns | | t _{ESBDD} | | 2.69 | | 3.35 | | 3.97 | ns | | t _{PD} | | 1.55 | | 1.93 | _ | 2.29 | ns | | t _{PTERMSU} | 1.01 | | 1.23 | | 1.52 | | ns | | t _{PTERMCO} | | 1.06 | | 1.32 | | 1.04 | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.81 | | 3.19 | | 3.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.12 | 2.00 | 5.62 | 2.00 | 6.11 | ns | | t _{XZBIDIR} | | 7.51 | | 8.32 | | 8.67 | ns | | tzxbidir | | 7.51 | | 8.32 | | 8.67 | ns | | t _{INSUBIDIRPLL} | 3.30 | | 3.64 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 3.01 | 0.50 | 3.36 | - | - | ns | | txzbidirpll | | 5.40 | | 6.05 | | - | ns | | tzxbidirpll | | 5.40 | | 6.05 | | - | ns | Tables 79 through 84 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K300E APEX 20KE devices. | Table 79. EP2 | Table 79. EP20K300E f _{MAX} LE Timing Microparameters | | | | | | | | | | | | |------------------|--|------|------|------|------|------|----|--|--|--|--|--| | Symbol | - | 1 | | -2 | -; | -3 | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | | t _{SU} | 0.16 | | 0.17 | | 0.18 | | ns | | | | | | | t _H | 0.31 | | 0.33 | | 0.38 | | ns | | | | | | | t _{CO} | | 0.28 | | 0.38 | | 0.51 | ns | | | | | | | t _{LUT} | | 0.79 | | 1.07 | | 1.43 | ns | | | | | | | Table 87. EP2 | OK400E f _{MAX} | Routing Delay | s | | | | | |--------------------|-------------------------|---------------|--------|----------|---------|---------|------| | Symbol | -1 Spee | d Grade | -2 Spe | ed Grade | -3 Spee | d Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{F1-4} | | 0.25 | | 0.25 | | 0.26 | ns | | t _{F5-20} | | 1.01 | | 1.12 | | 1.25 | ns | | t _{F20+} | | 3.71 | | 3.92 | | 4.17 | ns | | Table 88. EP20K400E Minimum Pulse Width Timing Parameters | | | | | | | | | | | |---|---------|---------|---------|---------|---------|------|----|--|--|--| | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{CH} | 1.36 | | 2.22 | | 2.35 | | ns | | | | | t _{CL} | 1.36 | | 2.26 | | 2.35 | | ns | | | | | t _{CLRP} | 0.18 | | 0.18 | | 0.19 | | ns | | | | | t _{PREP} | 0.18 | | 0.18 | | 0.19 | | ns | | | | | t _{ESBCH} | 1.36 | | 2.26 | | 2.35 | | ns | | | | | t _{ESBCL} | 1.36 | | 2.26 | | 2.35 | | ns | | | | | t _{ESBWP} | 1.17 | | 1.38 | | 1.56 | | ns | | | | | t _{ESBRP} | 0.94 | | 1.09 | | 1.25 | | ns | | | | | Symbol | -1 Spee | -1 Speed Grade | | -2 Speed Grade | | d Grade | Unit | |----------------------|---------|----------------|------|----------------|------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.51 | | 2.64 | | 2.77 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.25 | 2.00 | 5.79 | 2.00 | 6.32 | ns | | t _{INSUPLL} | 3.221 | | 3.38 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | toutcople | 0.50 | 2.25 | 0.50 | 2.45 | - | - | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |----------------------------|----------------|------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.93 | | 3.23 | | 3.44 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 5.25 | 2.00 | 5.79 | 2.00 | 6.32 | ns | | t _{XZBIDIR} | | 5.95 | | 6.77 | | 7.12 | ns | | t _{ZXBIDIR} | | 5.95 | | 6.77 | | 7.12 | ns | | t _{INSUBIDIRPLL} | 4.31 | | 4.76 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | t _{OUTCOBIDIRPLL} | 0.50 | 2.25 | 0.50 | 2.45 | - | - | ns | | txzbidirpll | | 2.94 | | 3.43 | | - | ns | | tzxbidirpll | | 2.94 | | 3.43 | | - | ns | Tables 91 through 96 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K600E APEX 20KE devices. | Table 91. EP20K600E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |--|---------|----------------|------|---------|----------------|------|------|--|--|--| | Symbol | -1 Spee | -1 Speed Grade | | d Grade | -3 Speed Grade | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{SU} | 0.16 | | 0.16 | | 0.17 | | ns | | | | | t _H | 0.29 | | 0.33 | | 0.37 | | ns | | | | | t _{CO} | | 0.65 | | 0.38 | | 0.49 | ns | | | | | t _{LUT} | | 0.70 | | 1.00 | | 1.30 | ns | | | | | Symbol | -1 Speed | -1 Speed Grade | | -2 Speed Grade | | d Grade | Unit | |--------------------|----------|----------------|------|----------------|------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CLRP} | 0.18 | | 0.26 | | 0.34 | | ns | | t _{PREP} | 0.18 | | 0.26 | | 0.34 | | ns | | t _{ESBCH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBCL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBWP} | 1.17 | | 1.68 | | 2.18 | | ns | | t _{ESBRP} | 0.95 | | 1.35 | | 1.76 | | ns | | Table 95. EP20K600E External Timing Parameters | | | | | | | | | | | | |--|----------------|------|---------|----------------|------|---------|------|--|--|--|--| | Symbol | -1 Speed Grade | | -2 Spec | -2 Speed Grade | | d Grade | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | t _{INSU} | 2.74 | | 2.74 | | 2.87 | | ns | | | | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | | | | toutco | 2.00 | 5.51 | 2.00 | 6.06 | 2.00 | 6.61 | ns | | | | | | t _{INSUPLL} | 1.86 | | 1.96 | | - | | ns | | | | | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | | | | | toutcople | 0.50 | 2.62 | 0.50 | 2.91 | - | - | ns | | | | | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |---------------------------|----------------|------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 0.64 | | 0.98 | | 1.08 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.51 | 2.00 | 6.06 | 2.00 | 6.61 | ns | | t _{XZBIDIR} | | 6.10 | | 6.74 | | 7.10 | ns | | t _{ZXBIDIR} | | 6.10 | | 6.74 | | 7.10 | ns | | t _{INSUBIDIRPLL} | 2.26 | | 2.68 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 2.62 | 0.50 | 2.91 | - | - | ns | | ^t xzbidirpll | | 3.21 | | 3.59 | | - | ns | | tzxbidirpll | | 3.21 | | 3.59 | | - | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-------------------------|----------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.78 | | 2.02 | | 1.95 | ns | | t _{ESBSRC} | | 2.52 | | 2.91 | | 3.14 | ns | | t _{ESBAWC} | | 3.52 | | 4.11 | | 4.40 | ns | | t _{ESBSWC} | | 3.23 | | 3.84 | | 4.16 | ns | | t _{ESBWASU} | 0.62 | | 0.67 | | 0.61 | | ns | | t _{ESBWAH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBWDSU} | 0.77 | | 0.79 | | 0.81 | | ns | | t _{ESBWDH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBRASU} | 1.74 | | 1.92 | | 1.85 | | ns | | t _{ESBRAH} | 0.00 | | 0.01 | | 0.23 | | ns | | t _{ESBWESU} | 2.07 | | 2.28 | | 2.41 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.25 | | 0.27 | | 0.29 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.11 | | 0.04 | | 0.11 | | ns | | t _{ESBRADDRSU} | 0.14 | | 0.11 | | 0.16 | | ns | | t _{ESBDATACO1} | | 1.29 | | 1.50 | | 1.63 | ns | | t _{ESBDATACO2} | | 2.55 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.12 | | 3.57 | | 3.85 | ns | | t _{PD} | | 1.84 | | 2.13 | | 2.32 | ns | | t _{PTERMSU} | 1.08 | | 1.19 | | 1.32 | | ns | | t _{PTERMCO} | | 1.31 | | 1.53 | | 1.66 | ns | | Table 105. EP20K1500E f _{MAX} Routing Delays | | | | | | | | | | | | | |---|----------------|------|----------------|------|----------------|------|------|--|--|--|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | | t _{F1-4} | | 0.28 | | 0.28 | | 0.28 | ns | | | | | | | t _{F5-20} | | 1.36 | | 1.50 | | 1.62 | ns | | | | | | | t _{F20+} | | 4.43 | | 4.48 | | 5.07 | ns | | | | | |