E·XFL

Intel - EP20K1000EFC672-3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

2000	
Product Status	Obsolete
Number of LABs/CLBs	3840
Number of Logic Elements/Cells	38400
Total RAM Bits	327680
Number of I/O	508
Number of Gates	1772000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k1000efc672-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

APEX[™] 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and productterm-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, registerintensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device.

APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices.

Feature	APEX 20K Devices	APFX 20KF Devices
32/64-Bit, 33-MHz PCI	grades	Full compliance in -1, -2 speed grades
32/64-Bit, 66-MHz PCI	-	Full compliance in -1 speed grade
MultiVolt I/O	2.5-V or 3.3-V V _{CCIO}	1.8-V, 2.5-V, or 3.3-V V _{CCIO}
	V _{CCIO} selected for device	V _{CCIO} selected block-by-block
	Certain devices are 5.0-V tolerant	5.0-V tolerant with use of external resistor
ClockLock support	Clock delay reduction	Clock delay reduction
	2× and 4× clock multiplication	$m/(n \times v)$ or $m/(n \times k)$ clock multiplication
		Drive ClockLock output off-chip
		External clock feedback
		ClockShift
		LVDS support
		Up to four PLLs
		ClockShift, clock phase adjustment
Dedicated clock and input pins	Six	Eight
I/O standard support	2.5-V, 3.3-V, 5.0-V I/O	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O
	3.3-V PCI	2.5-V I/O
	Low-voltage complementary	3.3-V PCI and PCI-X
	metal-oxide semiconductor	3.3-V Advanced Graphics Port (AGP)
	(LVCMOS)	Center tap terminated (CTT)
	Low-voltage transistor-to-transistor	GTL+
	logic (LVTTL)	LVCMOS
		True-LVDS and LVPECL data pins
		(In EP20K300E and larger devices)
		LVDS and LVPECL signaling (in all BGA
		and FineLine BGA devices)
		LVDS and LVPECL data pins up to
		156 Mbps (III - I speed grade devices)
		SSTL-3 Class Land II
Memory support	Dual-port BAM	CAM
	FIFO	Dual-port BAM
	BAM	FIFO
	BOM	BAM
		ROM

Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure.

Carry Chain

The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higherorder bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB[™] structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure.

Figure 6 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures.

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II software Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used.

Counter Mode

The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs.

Figure 12. APEX 20KE FastRow Interconnect

Table 9 summarizes how various elements of the APEX 20K architecture drive each other.

Table 9. APEX 20K Routing Scheme									
Source	Destination								
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect
Row I/O Pin					✓	~	~	~	
Column I/O Pin								~	✓ (1)
LE					~	~	~	~	
ESB					 Image: A set of the set of the	~	~	~	
Local Interconnect	~	~	~	~					
MegaLAB Interconnect					~				
Row FastTrack Interconnect						~		~	
Column FastTrack Interconnect						~	~		
FastRow Interconnect					✓ (1)				

Note to Table 9:

(1) This connection is supported in APEX 20KE devices only.

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode

Notes to Figure 21:

All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)APEX 20KE devices have four dedicated clocks. (2)

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Altera Corporation

APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains				
Programmable Delays	Quartus II Logic Option			
Input Pin to Core Delay	Decrease input delay to internal cells			
Input Pin to Input Register Delay	Decrease input delay to input registers			
Core to Output Register Delay	Decrease input delay to output register			
Output Register t_{CO} Delay	Increase delay to output pin			
Clock Enable Delay	Increase clock enable delay			

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. Figure 28 shows how a column IOE connects to the interconnect.

Figure 28. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed.

Figure 29. APEX 20KE I/O Banks

Notes to Figure 29:

- For more information on placing I/O pins in LVDS blocks, refer to the Guidelines for Using LVDS Blocks section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V.

Power Sequencing & Hot Socketing

Because APEX 20K and APEX 20KE devices can be used in a mixedvoltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any order.

For more information, please refer to the "Power Sequencing Considerations" section in the *Configuring APEX 20KE & APEX 20KC Devices* chapter of the *Configuration Devices Handbook*.

Signals can be driven into APEX 20K devices before and during power-up without damaging the device. In addition, APEX 20K devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20K and APEX 20KE devices operate as specified by the user.

Table 15. Al	Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2)						
Symbol	Parameter	Min	Max	Unit			
t _{SKEW}	Skew delay between related ClockLock/ClockBoost-generated clocks		500	ps			
t _{JITTER}	Jitter on ClockLock/ClockBoost-generated clock (5)		200	ps			
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps			

Notes to Table 15:

- (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz.
- (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time.
- (4) The jitter specification is measured under long-term observation.
- (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps.

Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices.

Symbol	Parameter	Min	Max	Unit
f _{OUT}	Output frequency	25	170	MHz
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	170	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	80	MHz
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	34	MHz
t _{OUTDUTY}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1)		25,000 (2)	PPM
t _R	Input rise time		5	ns
t _F	Input fall time		5	ns
t _{LOCK}	Time required for ClockLock/ ClockBoost to acquire lock (3)		10	μs
t _{SKEW}	Skew delay between related ClockLock/ ClockBoost- generated clock	500	500	ps
t _{JITTER}	Jitter on ClockLock/ ClockBoost-generated clock (4)		200	ps
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps

Table 16. APEX 20K ClockLock & ClockBoost Parameters for -2 Speed Grade Devices

Table 18. /	Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1)								
Symbol	Parameter	I/O Standard	-1X Spe	ed Grade	-2X Speed Grade		Units		
			Min	Max	Min	Max			
f _{IN}	Input clock frequency	3.3-V LVTTL	1.5	290	1.5	257	MHz		
		2.5-V LVTTL	1.5	281	1.5	250	MHz		
		1.8-V LVTTL	1.5	272	1.5	243	MHz		
		GTL+	1.5	303	1.5	261	MHz		
		SSTL-2 Class I	1.5	291	1.5	253	MHz		
		SSTL-2 Class II	1.5	291	1.5	253	MHz		
		SSTL-3 Class I	1.5	300	1.5	260	MHz		
		SSTL-3 Class II	1.5	300	1.5	260	MHz		
		LVDS	1.5	420	1.5	350	MHz		

Notes to Tables 17 and 18:

 All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.

- (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK_ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz ð f_{VCO} ð 840 MHz for LVDS mode.

SignalTap Embedded Logic Analyzer

APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured. Table 22 shows the JTAG timing parameters and values for APEX 20K devices.

Symbol	Parameter	Min	Max	Unit			
t _{JCP}	TCK clock period	100		ns			
t _{JCH}	TCK clock high time	50		ns			
t _{JCL}	TCK clock low time	50		ns			
t _{JPSU}	JTAG port setup time	20		ns			
t _{JPH}	JTAG port hold time	45		ns			
t _{JPCO}	JTAG port clock to output		25	ns			
t _{JPZX}	JTAG port high impedance to valid output		25	ns			
t _{JPXZ}	JTAG port valid output to high impedance		25	ns			
t _{JSSU}	Capture register setup time	20		ns			
t _{JSH}	Capture register hold time	45		ns			
t _{JSCO}	Update register clock to output		35	ns			
t _{JSZX}	Update register high impedance to valid output		35	ns			
t _{JSXZ}	Update register valid output to high impedance		35	ns			

Table 22. APEX 20K JTAG Timing Parameters & Values

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- Jam Programming & Test Language Specification

Generic Testing

Each APEX 20K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20K devices are made under conditions equivalent to those shown in Figure 32. Multiple test patterns can be used to configure devices during all stages of the production flow.

Figure 32. APEX 20K AC Test Conditions Note (1)

Note to Figure 32:

Power supply transients can affect AC measurements. Simultaneous transitions of (1) multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

Operating **Conditions**

Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices.

Table 2	able 23. APEX ZUK 5.0-V Tolerani Device Absolute Maximum Ratinys Notes (T), (2)							
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CCINT}	Supply voltage	With respect to ground (3)	-0.5	3.6	V			
V _{CCIO}			-0.5	4.6	V			
VI	DC input voltage		-2.0	5.75	V			
I _{OUT}	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	°C			
T _{AMB}	Ambient temperature	Under bias	-65	135	°C			
ТJ	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C			
		Ceramic PGA packages, under bias		150	°C			

Table 23. APEX 20K 5.0-V Tolerant Device Absolute Maximum Ratings	Notes (1), (2)
---	----------------

Table 2	Table 24. APEX 20K 5.0-V Tolerant Device Recommended Operating Conditions Note (2)							
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(4), (5)	2.375 (2.375)	2.625 (2.625)	V			
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5)	3.00 (3.00)	3.60 (3.60)	V			
	Supply voltage for output buffers, 2.5-V operation	(4), (5)	2.375 (2.375)	2.625 (2.625)	V			
VI	Input voltage	(3), (6)	-0.5	5.75	V			
Vo	Output voltage		0	V _{CCIO}	V			
ТJ	Junction temperature	For commercial use	0	85	°C			
		For industrial use	-40	100	°C			
t _R	Input rise time			40	ns			
t _F	Input fall time			40	ns			

Table 25. APEX 20K 5.0-V Tolerant Device DC Operating Conditions (Part 1 of 2) Notes (2), (7), (8)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IH}	High-level input voltage		1.7, 0.5 × V _{CCIO} (9)		5.75	V		
V _{IL}	Low-level input voltage		-0.5		$0.8, 0.3 \times V_{CCIO}$	V		
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	2.4			V		
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	V _{CCIO} – 0.2			V		
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (10)	$0.9 \times V_{CCIO}$			V		
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	2.1			V		
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	2.0			V		
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (10)$	1.7			V		

Table 26. APEX 20K 5.0-V Tolerant Device Capacitance Notes (2), (14)								
Symbol	Parameter	Conditions	Min	Max	Unit			
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF			
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF			
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF			

Notes to Tables 23 through 26:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- All APEX 20K devices are 5.0-V tolerant. (2)
- (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- Numbers in parentheses are for industrial-temperature-range devices. (4)
- Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. (5)
- All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are (6) powered.
- (7)Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ or 3.3 V.
- These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on (8)page 62.
- (9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 33 on page 68.
- (10) The I_{OH} parameter refers to high-level TTL, PCI or CMOS output current.
- (11) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (12) This value is specified for normal device operation. The value may vary during power-up.
- (13) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO} .
- (14) Capacitance is sample-tested only.

Tables 27 through 30 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KE devices.

Table 27. APEX 20KE Device Absolute Maximum Ratings Note (1)							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	2.5	V		
V _{CCIO}			-0.5	4.6	V		
VI	DC input voltage		-0.5	4.6	V		
I _{OUT}	DC output current, per pin		-25	25	mA		
T _{STG}	Storage temperature	No bias	-65	150	°C		
T _{AMB}	Ambient temperature	Under bias	-65	135	°C		
Τ _J	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C		
		Ceramic PGA packages, under bias		150	°C		

Figure 37. APEX 20KE f_{MAX} Timing Model

Table 39. APEX 20KE External Bidirectional Timing Parameters Note (1)					
Symbol	Symbol Parameter				
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at LAB adjacent Input Register				
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at LAB adjacent Input Register				
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE output register	C1 = 10 pF			
t _{XZBIDIR}	Synchronous Output Enable Register to output buffer disable delay	C1 = 10 pF			
t _{ZXBIDIR}	Synchronous Output Enable Register output buffer enable delay	C1 = 10 pF			
t _{INSUBIDIRPLL}	Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register				
t _{INHBIDIRPLL}	Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register				
^t OUTCOBIDIRPLL	Clock-to-output delay for bidirectional pins with PLL clock at IOE output register	C1 = 10 pF			
t _{XZBIDIRPLL}	Synchronous Output Enable Register to output buffer disable delay with PLL	C1 = 10 pF			
t _{ZXBIDIRPLL}	Synchronous Output Enable Register output buffer enable delay with PLL	C1 = 10 pF			

Note to Tables 38 and 39:

Г

(1) These timing parameters are sample-tested only.

Table 74. EP20K200E f _{MAX} ESB Timing Microparameters							
Symbol	-1		-2		-3		Unit
	Min	Мах	Min	Мах	Min	Max	
t _{ESBARC}		1.68		2.06		2.24	ns
t _{ESBSRC}		2.27		2.77		3.18	ns
t _{ESBAWC}		3.10		3.86		4.50	ns
t _{ESBSWC}		2.90		3.67		4.21	ns
t _{ESBWASU}	0.55		0.67		0.74		ns
t _{ESBWAH}	0.36		0.46		0.48		ns
t _{ESBWDSU}	0.69		0.83		0.95		ns
t _{ESBWDH}	0.36		0.46		0.48		ns
t _{ESBRASU}	1.61		1.90		2.09		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.42		1.71		2.01		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.06		-0.07		0.05		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.11		0.13		0.31		ns
t _{ESBRADDRSU}	0.18		0.23		0.39		ns
t _{ESBDATACO1}		1.09		1.35		1.51	ns
t _{ESBDATACO2}		2.19		2.75		3.22	ns
t _{ESBDD}		2.75		3.41		4.03	ns
t _{PD}		1.58		1.97		2.33	ns
t _{PTERMSU}	1.00		1.22		1.51		ns
t _{PTERMCO}		1.10		1.37		1.09	ns

Table 75. EP20K200E f _{MAX} Routing Delays									
Symbol	-1		-2		-3		Unit		
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.25		0.27		0.29	ns		
t _{F5-20}		1.02		1.20		1.41	ns		
t _{F20+}		1.99		2.23		2.53	ns		

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation