Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 416 | | Number of Logic Elements/Cells | 4160 | | Total RAM Bits | 53248 | | Number of I/O | 252 | | Number of Gates | 263000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 356-LBGA | | Supplier Device Package | 356-BGA (35x35) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k100bc356-3v | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations - Altera MegaCore® functions and Altera Megafunction Partners Program (AMPPSM) megafunctions - NativeLinkTM integration with popular synthesis, simulation, and timing analysis tools - Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation - Supports popular revision-control software packages including PVCS, Revision Control System (RCS), and Source Code Control System (SCCS) | Device | 144-Pin
TQFP | 208-Pin
PQFP
RQFP | 240-Pin
PQFP
RQFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA | |------------|-----------------|-------------------------|-------------------------|-------------|-------------|-------------| | EP20K30E | 92 | 125 | | | | | | EP20K60E | 92 | 148 | 151 | 196 | | | | EP20K100 | 101 | 159 | 189 | 252 | | | | EP20K100E | 92 | 151 | 183 | 246 | | | | EP20K160E | 88 | 143 | 175 | 271 | | | | EP20K200 | | 144 | 174 | 277 | | | | EP20K200E | | 136 | 168 | 271 | 376 | | | EP20K300E | | | 152 | | 408 | | | EP20K400 | | | | | 502 | 502 | | EP20K400E | | | | | 488 | | | EP20K600E | | | | | 488 | | | EP20K1000E | | | | | 488 | | | EP20K1500E | | | | | 488 | | | Table 5. APEX 20K F | ineLine BGA Pack | age Options & I/C | O Count Note | s (1), (2) | | |---------------------|------------------|-------------------|--------------|----------------|-----------| | Device | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | EP20K30E | 93 | 128 | | | | | EP20K60E | 93 | 196 | | | | | EP20K100 | | 252 | | | | | EP20K100E | 93 | 246 | | | | | EP20K160E | | | 316 | | | | EP20K200 | | | 382 | | | | EP20K200E | | | 376 | 376 | | | EP20K300E | | | | 408 | | | EP20K400 | | | | 502 <i>(3)</i> | | | EP20K400E | | | | 488 (3) | | | EP20K600E | | | | 508 (3) | 588 | | EP20K1000E | | | | 508 (3) | 708 | | EP20K1500E | | | | | 808 | #### Notes to Tables 4 and 5: - (1) I/O counts include dedicated input and clock pins. - (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages. - (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information. | Table 6. APEX 20K QFP, BGA & PGA Package Sizes | | | | | | | | | |--|--------------|-------------|-------------|-------------|-------------|-------------|--|--| | Feature | 144-Pin TQFP | 208-Pin QFP | 240-Pin QFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA | | | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.27 | 1.27 | _ | | | | Area (mm ²) | 484 | 924 | 1,218 | 1,225 | 2,025 | 3,906 | | | | $\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 22 × 22 | 30.4 × 30.4 | 34.9 × 34.9 | 35 × 35 | 45 × 45 | 62.5 × 62.5 | | | | Table 7. APEX 20K FineLine BGA Package Sizes | | | | | | | | | | | |---|-------------------------------------|-------|---------|---------|---------|--|--|--|--|--| | Feature 144 Pin 324 Pin 484 Pin 672 Pin 1,020 Pin | | | | | | | | | | | | Pitch (mm) | Pitch (mm) 1.00 1.00 1.00 1.00 1.00 | | | | | | | | | | | Area (mm ²) 169 361 529 729 1,089 | | | | | | | | | | | | $Length \times Width (mm \times mm)$ | 13 × 13 | 19×19 | 23 × 23 | 27 × 27 | 33 × 33 | | | | | | APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins. #### MegaLAB Structure APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure. Figure 2. MegaLAB Structure Figure 8. APEX 20K LE Operating Modes #### Notes to Figure 8: - (1) LEs in normal mode support register packing. - (2) There are two LAB-wide clock enables per LAB. - (3) When using the carry-in in normal mode, the packed register feature is unavailable. - (4) A register feedback multiplexer is available on LE1 of each LAB. - (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB. - (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB. | Source | Destination | | | | | | | | | | |----------------------------------|----------------|-------------------|----------|----------|-----------------------|-------------------------|----------------------------------|-------------------------------------|-------------------------|--| | | Row
I/O Pin | Column
I/O Pin | LE | ESB | Local
Interconnect | MegaLAB
Interconnect | Row
FastTrack
Interconnect | Column
FastTrack
Interconnect | FastRow
Interconnect | | | Row I/O Pin | | | | | ✓ | ✓ | ✓ | ✓ | | | | Column I/O
Pin | | | | | | | | ✓ | ✓ (1) | | | LE | | | | | ✓ | ✓ | ✓ | ✓ | | | | ESB | | | | | ✓ | ✓ | ✓ | ✓ | | | | Local
Interconnect | ✓ | ✓ | ✓ | ✓ | | | | | | | | MegaLAB
Interconnect | | | | | ~ | | | | | | | Row
FastTrack
Interconnect | | | | | | ✓ | | ✓ | | | | Column | | | | | | ✓ | ✓ | | | | | FastTrack
Interconnect | | | | | | | | | | | | FastRow
Interconnect | | | | | ✓ (1) | | | | | | Note to Table 9: (1) This connection is supported in APEX 20KE devices only. ## **Product-Term Logic** The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals. In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode. ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock. ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic. When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays. To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18. #### Read/Write Clock Mode The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode. Figure 20. ESB in Read/Write Clock Mode Note (1) Notes to Figure 20: (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (2) APEX 20KE devices have four dedicated clocks. #### Advanced I/O Standard Support APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II. For more information on I/O standards supported by APEX 20KE devices, see *Application Note 117 (Using Selectable I/O Standards in Altera Devices)*. The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support. Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs. When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|---|---|-----|-----|-------------------------|------| | V _{OL} | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC,
V _{CCIO} = 3.00 V (11) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 3.00 V (11) | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I _{OL} = 1.5 mA DC,
V _{CCIO} = 3.00 to 3.60 V
(11) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.30 V (11) | | | 0.2 | ٧ | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.30 V (11) | | | 0.4 | ٧ | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.30 V (11) | | | 0.7 | ٧ | | I _I | Input pin leakage current | $V_1 = 5.75 \text{ to } -0.5 \text{ V}$ | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = 5.75 \text{ to } -0.5 \text{ V}$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby)
(All ESBs in power-down mode) | V _I = ground, no load, no toggling inputs, -1 speed grade (12) | | 10 | | mA | | | | V _I = ground, no load, no toggling inputs,
-2, -3 speed grades (12) | | 5 | | mA | | R _{CONF} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 V (13) | 20 | | 50 | W | | | before and during configuration | V _{CCIO} = 2.375 V (13) | 30 | | 80 | W | | Table 26. APEX 20K 5.0-V Tolerant Device CapacitanceNotes (2), (14) | | | | | | | | |---|--|-------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | #### Notes to Tables 23 through 26: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) All APEX 20K devices are 5.0-V tolerant. - (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (4) Numbers in parentheses are for industrial-temperature-range devices. - (5) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (6) All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (7) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ or 3.3 V. - (8) These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on page 62. - (9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 33 on page 68. - (10) The I_{OH} parameter refers to high-level TTL, PCI or CMOS output current. - (11) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (12) This value is specified for normal device operation. The value may vary during power-up. - (13) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO} . - (14) Capacitance is sample-tested only. Tables 27 through 30 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KE devices. | Table 2 | Table 27. APEX 20KE Device Absolute Maximum Ratings Note (1) | | | | | | | | |--------------------|--|--|------|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | V _{CCINT} | Supply voltage | With respect to ground (2) | -0.5 | 2.5 | V | | | | | V_{CCIO} | | | -0.5 | 4.6 | ٧ | | | | | V _I | DC input voltage | | -0.5 | 4.6 | V | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | TJ | Junction temperature | PQFP, RQFP, TQFP, and BGA packages, under bias | | 135 | ° C | | | | | | | Ceramic PGA packages, under bias | | 150 | ° C | | | | All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength. Figure 36 shows the f_{MAX} timing model for APEX 20K devices. Figure 37 shows the f_{MAX} timing model for APEX 20KE devices. These parameters can be used to estimate f_{MAX} for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information. | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Spee | Unit | | |-----------------------------|---------|---------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.1 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCOBIDIR} (2) | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 47. EP2 | Table 47. EP20K400 External Timing Parameters | | | | | | | | | | | |------------------------|---|-----|---------|----------------|-----|----------------|----|--|--|--|--| | Symbol | -1 Speed Grade | | -2 Spec | -2 Speed Grade | | -3 Speed Grade | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | t _{INSU} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | | | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | | | t _{OUTCO} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | | | | | t _{INSU} (2) | 0.4 | | 1.0 | | - | | ns | | | | | | t _{INH} (2) | 0.0 | | 0.0 | | _ | | ns | | | | | | t _{OUTCO} (2) | 0.5 | 3.1 | 0.5 | 4.1 | _ | _ | ns | | | | | | Table 48. EP20K400 External Bidirections | I Timina | Parameters 1 4 1 | |--|----------|------------------| |--|----------|------------------| | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spe | ed Grade | Unit | |-----------------------------|---------|---------|---------|----------|--------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | t _{XZBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{ZXBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{INSUBIDIR} (2) | 0.5 | | 1.0 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir (2) | 0.5 | 3.1 | 0.5 | 4.1 | - | - | ns | | t _{XZBIDIR} (2) | | 6.2 | | 7.6 | | - | ns | | t _{ZXBIDIR} (2) | | 6.2 | | 7.6 | | _ | ns | Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices. | Symbol | - | 1 | -2 | | -3 | | Unit | |------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.17 | | 0.15 | | 0.16 | | ns | | t _H | 0.32 | | 0.33 | | 0.39 | | ns | | t _{CO} | | 0.29 | | 0.40 | | 0.60 | ns | | t _{LUT} | | 0.77 | | 1.07 | | 1.59 | ns | | Table 69. EP2 | Table 69. EP20K160E f _{MAX} Routing Delays | | | | | | | | | | | | |--------------------|---|------|-----|------|-----|------|------|--|--|--|--|--| | Symbol | - | 1 | | -2 | -1 | 3 | Unit | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | | t _{F1-4} | | 0.25 | | 0.26 | | 0.28 | ns | | | | | | | t _{F5-20} | | 1.00 | | 1.18 | | 1.35 | ns | | | | | | | t _{F20+} | | 1.95 | | 2.19 | | 2.30 | ns | | | | | | | Symbol | -1 | | -2 | | -3 | | Unit | |--------------------|------|-----|------|-----|------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{ESBCH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBCL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBWP} | 1.15 | | 1.45 | | 1.73 | | ns | | t _{ESBRP} | 0.93 | | 1.15 | | 1.38 | | ns | | Symbol | -1 | | - | -2 | | -3 | | |----------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.23 | | 2.34 | | 2.47 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | toutco | 2.00 | 5.07 | 2.00 | 5.59 | 2.00 | 6.13 | ns | | t _{INSUPLL} | 2.12 | | 2.07 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | toutcople | 0.50 | 3.00 | 0.50 | 3.35 | - | - | ns | | Table 76. EP2 | Table 76. EP20K200E Minimum Pulse Width Timing Parameters | | | | | | | | | | | | |--------------------|---|-----|------|-----|------|-----|------|--|--|--|--|--| | Symbol | -1 | | -2 | | -3 | | Unit | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | | t _{CH} | 1.36 | | 2.44 | | 2.65 | | ns | | | | | | | t _{CL} | 1.36 | | 2.44 | | 2.65 | | ns | | | | | | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | | | | | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | | | | | | t _{ESBCH} | 1.36 | | 2.44 | | 2.65 | | ns | | | | | | | t _{ESBCL} | 1.36 | | 2.44 | | 2.65 | | ns | | | | | | | t _{ESBWP} | 1.18 | | 1.48 | | 1.76 | | ns | | | | | | | t _{ESBRP} | 0.95 | | 1.17 | | 1.41 | | ns | | | | | | | Symbol | -1 | | - | -2 | | -3 | | | |-----------------------|------|------|------|------|------|------|----|--| | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} | 2.24 | | 2.35 | | 2.47 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{outco} | 2.00 | 5.12 | 2.00 | 5.62 | 2.00 | 6.11 | ns | | | t _{INSUPLL} | 2.13 | | 2.07 | | - | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | | t _{OUTCOPLL} | 0.50 | 3.01 | 0.50 | 3.36 | - | - | ns | | | Symbol | -1 | | -2 | | -3 | | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.81 | | 3.19 | | 3.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.12 | 2.00 | 5.62 | 2.00 | 6.11 | ns | | t _{XZBIDIR} | | 7.51 | | 8.32 | | 8.67 | ns | | tzxbidir | | 7.51 | | 8.32 | | 8.67 | ns | | t _{INSUBIDIRPLL} | 3.30 | | 3.64 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 3.01 | 0.50 | 3.36 | - | - | ns | | t _{XZBIDIRPLL} | | 5.40 | | 6.05 | | - | ns | | tzxbidirpll | | 5.40 | | 6.05 | | - | ns | Tables 79 through 84 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K300E APEX 20KE devices. | Table 79. EP2 | Table 79. EP20K300E f _{MAX} LE Timing Microparameters | | | | | | | | | | | | |------------------|--|------|------|------|------|------|------|--|--|--|--|--| | Symbol | - | -1 | | -2 | | 3 | Unit | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | | t _{SU} | 0.16 | | 0.17 | | 0.18 | | ns | | | | | | | t _H | 0.31 | | 0.33 | | 0.38 | | ns | | | | | | | t _{CO} | | 0.28 | | 0.38 | | 0.51 | ns | | | | | | | t _{LUT} | | 0.79 | | 1.07 | | 1.43 | ns | | | | | | Tables 97 through 102 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices. | Table 97. EP2 | OK1000E f _{MAX} | LE Timing Mi | icroparamete | rs | | | | |------------------|--------------------------|----------------|--------------|----------|----------------|------|------| | Symbol | -1 Spee | -1 Speed Grade | | ed Grade | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.25 | | 0.25 | | 0.25 | | ns | | t _H | 0.25 | | 0.25 | | 0.25 | | ns | | t _{CO} | | 0.28 | | 0.32 | | 0.33 | ns | | t _{LUT} | | 0.80 | | 0.95 | | 1.13 | ns | | Symbol | -1 Spee | d Grade | -2 Spec | ed Grade | -3 Spee | d Grade | Unit | |-------------------------|---------|---------|---------|----------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.78 | | 2.02 | | 1.95 | ns | | t _{ESBSRC} | | 2.52 | | 2.91 | | 3.14 | ns | | t _{ESBAWC} | | 3.52 | | 4.11 | | 4.40 | ns | | t _{ESBSWC} | | 3.23 | | 3.84 | | 4.16 | ns | | t _{ESBWASU} | 0.62 | | 0.67 | | 0.61 | | ns | | t _{ESBWAH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBWDSU} | 0.77 | | 0.79 | | 0.81 | | ns | | t _{ESBWDH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBRASU} | 1.74 | | 1.92 | | 1.85 | | ns | | t _{ESBRAH} | 0.00 | | 0.01 | | 0.23 | | ns | | t _{ESBWESU} | 2.07 | | 2.28 | | 2.41 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.25 | | 0.27 | | 0.29 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.11 | | 0.04 | | 0.11 | | ns | | t _{ESBRADDRSU} | 0.14 | | 0.11 | | 0.16 | | ns | | t _{ESBDATACO1} | | 1.29 | | 1.50 | | 1.63 | ns | | t _{ESBDATACO2} | | 2.55 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.12 | | 3.57 | | 3.85 | ns | | t _{PD} | | 1.84 | | 2.13 | | 2.32 | ns | | t _{PTERMSU} | 1.08 | | 1.19 | | 1.32 | _ | ns | | t _{PTERMCO} | | 1.31 | | 1.53 | | 1.66 | ns | | Table 105. EP. | Table 105. EP20K1500E f _{MAX} Routing Delays | | | | | | | | | | | | |--------------------|---|---------|--------|----------|---------|---------|------|--|--|--|--|--| | Symbol | -1 Spee | d Grade | -2 Spe | ed Grade | -3 Spee | d Grade | Unit | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | | t _{F1-4} | | 0.28 | | 0.28 | | 0.28 | ns | | | | | | | t _{F5-20} | | 1.36 | | 1.50 | | 1.62 | ns | | | | | | | t _{F20+} | | 4.43 | | 4.48 | | 5.07 | ns | | | | | | | Table 110. Selectable I/O Standard Output Delays | | | | | | | | |--|----------------|-------|----------------|-------|----------------|-------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | Min | | LVCMOS | | 0.00 | | 0.00 | | 0.00 | ns | | LVTTL | | 0.00 | | 0.00 | | 0.00 | ns | | 2.5 V | | 0.00 | | 0.09 | | 0.10 | ns | | 1.8 V | | 2.49 | | 2.98 | | 3.03 | ns | | PCI | | -0.03 | | 0.17 | | 0.16 | ns | | GTL+ | | 0.75 | | 0.75 | | 0.76 | ns | | SSTL-3 Class I | | 1.39 | | 1.51 | | 1.50 | ns | | SSTL-3 Class II | | 1.11 | | 1.23 | | 1.23 | ns | | SSTL-2 Class I | | 1.35 | | 1.48 | | 1.47 | ns | | SSTL-2 Class II | | 1.00 | | 1.12 | | 1.12 | ns | | LVDS | | -0.48 | | -0.48 | | -0.48 | ns | | CTT | | 0.00 | | 0.00 | | 0.00 | ns | | AGP | | 0.00 | | 0.00 | | 0.00 | ns | # Power Consumption To estimate device power consumption, use the interactive power calculator on the Altera web site at http://www.altera.com. # Configuration & Operation The APEX 20K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes. # **Operating Modes** The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*. Before and during device configuration, all I/O pins are pulled to $V_{\mbox{\scriptsize CCIO}}$ by a built-in weak pull-up resistor. ### Version 4.1 APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes: - t_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104. - Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.