E·XF

Intel - EP20K100EBC356-1 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	416
Number of Logic Elements/Cells	4160
Total RAM Bits	53248
Number of I/O	246
Number of Gates	263000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k100ebc356-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs.

If both the rising and falling edges of a clock are used in a LAB, both LABwide clock signals are used.

The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- APEX 20KE devices have four dedicated clocks. (1)
- The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the (2) LAB.
- (3)The SYNCCLR signal can be generated by the local interconnect or global signals.

Figure 6. APEX 20K Carry Chain

Read/Write Clock Mode

The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode.

Notes to Figure 20:

- (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.
- (2) APEX 20KE devices have four dedicated clocks.

For more information on APEX 20KE devices and CAM, see *Application* Note 119 (Implementing High-Speed Search Applications with APEX CAM).

Driving Signals to the ESB

ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic.

(1) APEX 20KE devices have four dedicated clocks.

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

Figure 25. APEX 20K Bidirectional I/O Registers Note (1)

Altera Corporation

Figure 26. APEX 20KE Bidirectional I/O Registers N

Notes to Figure 26:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Advanced I/O Standard Support

APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II.

For more information on I/O standards supported by APEX 20KE devices, see *Application Note* 117 (*Using Selectable I/O Standards in Altera Devices*).

The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support.

Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks.

Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2)								
Symbol	Parameter	Min	Max	Unit				
t _{SKEW}	Skew delay between related ClockLock/ClockBoost-generated clocks		500	ps				
t _{JITTER}	Jitter on ClockLock/ClockBoost-generated clock (5)		200	ps				
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps				

Notes to Table 15:

- (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz.
- (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time.
- (4) The jitter specification is measured under long-term observation.
- (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps.

Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices.

Symbol	Parameter	Min	Max	Unit	
f _{OUT}	Output frequency	25	170	MHz	
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	170	MHz	
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	k frequency (ClockBoost clock multiplication lals 1) 2.5 170 k frequency (ClockBoost clock multiplication lals 2) 16 80 k frequency (ClockBoost clock multiplication lals 2) 10 34 k frequency (ClockBoost clock multiplication lals 4) 10 34 e for ClockLock/ClockBoost-generated clock 40 60 ation from user specification in the Quartus II 25,000 (2) ClockBoost clock multiplication factor equals 5			
f _{CLK4}	Output frequency 25 170 Input clock frequency (ClockBoost clock multiplication factor equals 1) 25 170 Input clock frequency (ClockBoost clock multiplication factor equals 2) 16 80 Input clock frequency (ClockBoost clock multiplication factor equals 2) 10 34 Input clock frequency (ClockBoost clock multiplication factor equals 4) 10 34 Duty cycle for ClockLock/ClockBoost-generated clock 40 60 Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1) 25,000 (2) Input fall time 5 10 Skew delay between related ClockLock/ ClockBoost- foot acquire lock (3) 500 500		MHz		
t _{OUTDUTY}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%	
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1)		25,000 (2)	PPM	
t _R	Input rise time		5	ns	
t _F	Input fall time		5	ns	
t _{LOCK}	Time required for ClockLock/ ClockBoost to acquire lock (3)		10	μs	
t _{SKEW}	Skew delay between related ClockLock/ ClockBoost- generated clock	een related ClockLock/ ClockBoost- 500 500		ps	
t _{JITTER}	Jitter on ClockLock/ ClockBoost-generated clock (4)		200	ps	
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps	

Table 16. APEX 20K ClockLock & ClockBoost Parameters for -2 Speed Grade Devices

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration.

Table 19. APEX 20K JTAG Instructions					
JTAG Instruction	Description				
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer.				
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.				
BYPASS (1)	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.				
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.				
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.				
ICR Instructions	Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster [™] or ByteBlasterMV [™] download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor.				
SignalTap Instructions (1)	Monitors internal device operation with the SignalTap embedded logic analyzer.				

able 19 APFX 20K .ITAG Instruction

Note to Table 19:

(1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions.

Table 25. APEX 20K 5.0-V Tolerant Device DC Operating Conditions (Part 2 of 2) Notes (2), (7), (8)									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)			0.45	V			
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (11)$			0.2	V			
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)			$0.1 imes V_{CCIO}$	V			
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (11)			0.2	V			
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (11)			0.4	V			
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (11)			0.7	V			
I _I	Input pin leakage current	$V_1 = 5.75$ to -0.5 V	-10		10	μA			
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = 5.75$ to -0.5 V	-10		10	μA			
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V_1 = ground, no load, no toggling inputs, -1 speed grade (12)		10		mA			
		V ₁ = ground, no load, no toggling inputs, -2, -3 speed grades (12)		5		mA			
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (13)	20		50	W			
	before and during configuration	V _{CCIO} = 2.375 V (13)	30		80	W			

Table 29. APEX 20KE Device DC Operating Conditions Notes (7), (8), (9)									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
V _{IH}	High-level LVTTL, CMOS, or 3.3-V PCI input voltage		1.7, 0.5 × V _{CCIO} (10)		4.1	V			
V _{IL}	Low-level LVTTL, CMOS, or 3.3-V PCI input voltage		-0.5		0.8, 0.3 × V _{CCIO} (10)	V			
V _{OH}	3.3-V high-level LVTTL output voltage	I _{OH} = -12 mA DC, V _{CCIO} = 3.00 V (11)	2.4			V			
	3.3-V high-level LVCMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V (11)	V _{CCIO} – 0.2			V			
	3.3-V high-level PCI output voltage	I _{OH} = -0.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)	$0.9 imes V_{CCIO}$			V			
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (11)	2.1			V			
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (11)	2.0			V			
		I _{OH} = -2 mA DC, V _{CCIO} = 2.30 V (11)	1.7			V			
V _{OL}	3.3-V low-level LVTTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V <i>(12)</i>			0.4	V			
	3.3-V low-level LVCMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (<i>12</i>)			0.2	V			
	3.3-V low-level PCI output voltage	$I_{OL} = 1.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (12)			0.1 × V _{CCIO}	V			
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (<i>12</i>)			0.2	V			
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.4	V			
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.7	V			
I _I	Input pin leakage current	V ₁ = 4.1 to -0.5 V (13)	-10		10	μΑ			
I _{OZ}	Tri-stated I/O pin leakage current	V _O = 4.1 to -0.5 V (13)	-10		10	μA			
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -1 speed grade		10		mA			
		V ₁ = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA			
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (14)	20		50	kΩ			
	before and during configuration	V _{CCIO} = 2.375 V (14)	30		80	kΩ			
		V _{CCIO} = 1.71 V (14)	60		150	kΩ			

Figure 40. Synchronous Bidirectional Pin External Timing

Notes to Figure 40:

- (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software.
- (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells= Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells= ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade.

Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68.

Table 31. APEX 20K f _{MAX} Timing Parameters (Part 1 of 2)					
Symbol	Parameter				
t _{SU}	LE register setup time before clock				
t _H	LE register hold time after clock				
t _{CO}	LE register clock-to-output delay				
t _{LUT}	LUT delay for data-in				
t _{ESBRC}	ESB Asynchronous read cycle time				
t _{ESBWC}	ESB Asynchronous write cycle time				
t _{ESBWESU}	ESB WE setup time before clock when using input register				
t _{ESBDATASU}	ESB data setup time before clock when using input register				
t _{ESBDATAH}	ESB data hold time after clock when using input register				
t _{ESBADDRSU}	ESB address setup time before clock when using input registers				
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers				

Table 43. EP20K100 External Timing Parameters									
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade			
	Min	Мах	Min	Max	Min	Max			
t _{INSU} (1)	2.3		2.8		3.2		ns		
t _{INH} (1)	0.0		0.0		0.0		ns		
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns		
t _{INSU} (2)	1.1		1.2		-		ns		
t _{INH} (2)	0.0		0.0		-		ns		
t _{OUTCO} (2)	0.5	2.7	0.5	3.1	_	4.8	ns		

Table 44. EP20K100 External Bidirectional Timing Parameters								
Symbol	-1 Spe	ed Grade	-2 Spe	-2 Speed Grade		-3 Speed Grade		
	Min	Мах	Min	Max	Min	Max		
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns	
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns	
t _{OUTCOBIDIR}	2.0	4.5	2.0	4.9	2.0	6.6	ns	
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns	
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns	
t _{INSUBIDIR} (2)	1.0		1.2		-		ns	
t _{inhbidir} (2)	0.0		0.0		-		ns	
toutcobidir <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns	
t _{XZBIDIR} (2)		4.3		5.0		-	ns	
t _{ZXBIDIR} (2)		4.3		5.0		-	ns	

Table 45. EP20K200 External Timing Parameters									
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade			
	Min	Max	Min	Мах	Min	Мах			
t _{INSU} (1)	1.9		2.3		2.6		ns		
t _{INH} (1)	0.0		0.0		0.0		ns		
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns		
t _{INSU} (2)	1.1		1.2		-		ns		
t _{INH} (2)	0.0		0.0		-		ns		
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns		

Tables 67 through 72 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K160E APEX 20KE devices.

Table 67. EP20K160E f _{MAX} LE Timing Microparameters										
Symbol	Symbol -1		-2		-	Unit				
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.22		0.24		0.26		ns			
t _H	0.22		0.24		0.26		ns			
t _{CO}		0.25		0.31		0.35	ns			
t _{LUT}		0.69		0.88		1.12	ns			

Table 72. EP20K160E External Bidirectional Timing Parameters											
Symbol	-	·1	-:	2	-	3	Unit				
	Min	Max	Min	Max	Min	Max					
t _{insubidir}	2.86		3.24		3.54		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
t _{outcobidir}	2.00	5.07	2.00	5.59	2.00	6.13	ns				
t _{XZBIDIR}		7.43		8.23		8.58	ns				
t _{ZXBIDIR}		7.43		8.23		8.58	ns				
t _{insubidirpll}	4.93		5.48		-		ns				
t _{inhbidirpll}	0.00		0.00		-		ns				
t _{outcobidirpll}	0.50	3.00	0.50	3.35	-	-	ns				
t _{XZBIDIRPLL}		5.36		5.99		-	ns				
t _{ZXBIDIRPLL}		5.36		5.99		-	ns				

Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 73. EP20K200E f _{MAX} LE Timing Microparameters												
Symbol	-1		-2		-	Unit						
	Min	Max	Min	Max	Min	Max						
t _{SU}	0.23		0.24		0.26		ns					
t _H	0.23		0.24		0.26		ns					
t _{CO}		0.26		0.31		0.36	ns					
t _{LUT}		0.70		0.90		1.14	ns					

Altera Corporation

Table 74. EP20k	(200E f _{MAX} ESI	3 Timing Micr	oparameters				
Symbol	-	1		-2	-	-3	
	Min	Мах	Min	Мах	Min	Max	
t _{ESBARC}		1.68		2.06		2.24	ns
t _{ESBSRC}		2.27		2.77		3.18	ns
t _{ESBAWC}		3.10		3.86		4.50	ns
t _{ESBSWC}		2.90		3.67		4.21	ns
t _{ESBWASU}	0.55		0.67		0.74		ns
t _{ESBWAH}	0.36		0.46		0.48		ns
t _{ESBWDSU}	0.69		0.83		0.95		ns
t _{ESBWDH}	0.36		0.46		0.48		ns
t _{ESBRASU}	1.61		1.90		2.09		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.42		1.71		2.01		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.06		-0.07		0.05		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.11		0.13		0.31		ns
t _{ESBRADDRSU}	0.18		0.23		0.39		ns
t _{ESBDATACO1}		1.09		1.35		1.51	ns
t _{ESBDATACO2}		2.19		2.75		3.22	ns
t _{ESBDD}		2.75		3.41		4.03	ns
t _{PD}		1.58		1.97		2.33	ns
t _{PTERMSU}	1.00		1.22		1.51		ns
t _{PTERMCO}		1.10		1.37		1.09	ns

Table 75. EP20K200E f _{MAX} Routing Delays											
Symbol	-	·1		-2	-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.25		0.27		0.29	ns				
t _{F5-20}		1.02		1.20		1.41	ns				
t _{F20+}		1.99		2.23		2.53	ns				

Table 82. EP	20K300E Minin	num Pulse W	idth Timing Pa	arameters			
Symbol	-	1	-2		-3	}	Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.19		0.26		0.35		ns
t _{PREP}	0.19		0.26		0.35		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.25		1.71		2.28		ns
t _{ESBRP}	1.01		1.38		1.84		ns

Table 83. EP20K300E External Timing Parameters												
Symbol	-1			-2	-3	-3						
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.31		2.44		2.57		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	5.29	2.00	5.82	2.00	6.24	ns					
tINSUPLL	1.76		1.85		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
toutcopll	0.50	2.65	0.50	2.95	-	-	ns					

Table 84. EP20K300E External Bidirectional Timing Parameters											
Symbol	-	1	-:	2	-	Unit					
	Min	Max	Min	Мах	Min	Max					
t _{insubidir}	2.77		2.85		3.11		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
t _{outcobidir}	2.00	5.29	2.00	5.82	2.00	6.24	ns				
t _{XZBIDIR}		7.59		8.30		9.09	ns				
t _{ZXBIDIR}		7.59		8.30		9.09	ns				
t _{insubidirpll}	2.50		2.76		-		ns				
t _{inhbidirpll}	0.00		0.00		-		ns				
t _{outcobidirpll}	0.50	2.65	0.50	2.95	-	-	ns				
t _{XZBIDIRPLL}		5.00		5.43		-	ns				
t _{ZXBIDIRPLL}		5.00		5.43		-	ns				

Table 102. EP20K1000E External Bidirectional Timing Parameters											
Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spec	Unit					
	Min	Max	Min	Max	Min	Max					
t _{insubidir}	3.22		3.33		3.51		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
toutcobidir	2.00	5.75	2.00	6.33	2.00	6.90	ns				
t _{XZBIDIR}		6.31		7.09		7.76	ns				
t _{ZXBIDIR}		6.31		7.09		7.76	ns				
t _{INSUBIDIRPL} L	3.25		3.26				ns				
t _{inhbidirpll}	0.00		0.00				ns				
t _{outcobidirpll}	0.50	2.25	0.50	2.99			ns				
t _{XZBIDIRPLL}		2.81		3.80			ns				
t _{ZXBIDIRPLL}		2.81		3.80			ns				

Tables 103 through 108 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1500E APEX 20KE devices.

Table 103. EP20K1500E f _{MAX} LE Timing Microparameters												
Symbol -1 S		d Grade -2 Sp		ed Grade	-3 Speed Grade		Unit					
	Min	Max	Min	Max	Min	Max						
t _{SU}	0.25		0.25		0.25		ns					
t _H	0.25		0.25		0.25		ns					
t _{CO}		0.28		0.32		0.33	ns					
t _{LUT}		0.80		0.95		1.13	ns					

Т

Revision History

The information contained in the *APEX 20K Programmable Logic Device Family Data Sheet* version 5.1 supersedes information published in previous versions.

Version 5.1

APEX 20K Programmable Logic Device Family Data Sheet version 5.1 contains the following changes:

- In version 5.0, the VI input voltage spec was updated in Table 28 on page 63.
- In version 5.0, *Note* (5) to Tables 27 through 30 was revised.
- Added *Note* (2) to Figure 21 on page 33.

Version 5.0

APEX 20K Programmable Logic Device Family Data Sheet version 5.0 contains the following changes:

- Updated Tables 23 through 26. Removed 2.5-V operating condition tables because all APEX 20K devices are now 5.0-V tolerant.
- Updated conditions in Tables 33, 38 and 39.
- Updated data for t_{ESBDATAH} parameter.

Version 4.3

APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains the following changes:

- Updated Figure 20.
- Updated *Note* (2) to Table 13.
- Updated notes to Tables 27 through 30.

Version 4.2

APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains the following changes:

- Updated Figure 29.
- Updated *Note* (1) to Figure 29.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation