E·XFL

Intel - EP20K100EFC144-1 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	416
Number of Logic Elements/Cells	4160
Total RAM Bits	53248
Number of I/O	93
Number of Gates	263000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-BGA
Supplier Device Package	144-FBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k100efc144-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB.

APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.

Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs.

If both the rising and falling edges of a clock are used in a LAB, both LABwide clock signals are used.

The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- APEX 20KE devices have four dedicated clocks. (1)
- The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the (2) LAB.
- (3)The SYNCCLR signal can be generated by the local interconnect or global signals.

Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure.

Carry Chain

The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higherorder bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB[™] structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure.

Figure 6 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures.

Figure 10. FastTrack Connection to Local Interconnect

Table 9. APEX 20K Routing Scheme										
Source		Destination								
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect	
Row I/O Pin					✓	~	~	~		
Column I/O Pin								~	✓ (1)	
LE					~	~	~	~		
ESB					 Image: A set of the set of the	~	~	~		
Local Interconnect	~	~	~	~						
MegaLAB Interconnect					~					
Row FastTrack Interconnect						~		~		
Column FastTrack Interconnect						~	~			
FastRow Interconnect					✓ (1)					

Note to Table 9:

(1) This connection is supported in APEX 20KE devices only.

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

Figure 14. APEX 20K Macrocell

For registered functions, each macrocell register can be programmed individually to implement D, T, JK, or SR operation with programmable clock control. The register can be bypassed for combinatorial operation. During design entry, the designer specifies the desired register type; the Quartus II software then selects the most efficient register operation for each registered function to optimize resource utilization. The Quartus II software or other synthesis tools can also select the most efficient register operation automatically when synthesizing HDL designs.

Each programmable register can be clocked by one of two ESB-wide clocks. The ESB-wide clocks can be generated from device dedicated clock pins, global signals, or local interconnect. Each clock also has an associated clock enable, generated from the local interconnect. The clock and clock enable signals are related for a particular ESB; any macrocell using a clock also uses the associated clock enable.

If both the rising and falling edges of a clock are used in an ESB, both ESB-wide clock signals are used.

The programmable register also supports an asynchronous clear function. Within the ESB, two asynchronous clears are generated from global signals and the local interconnect. Each macrocell can either choose between the two asynchronous clear signals or choose to not be cleared. Either of the two clear signals can be inverted within the ESB. Figure 15 shows the ESB control logic when implementing product-terms.

Figure 15. ESB Product-Term Mode Control Logic

(1) APEX 20KE devices have four dedicated clocks.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 32 product terms to feed the macrocell OR logic directly, with two product terms provided by the macrocell and 30 parallel expanders provided by the neighboring macrocells in the ESB.

The Quartus II software Compiler can allocate up to 15 sets of up to two parallel expanders per set to the macrocells automatically. Each set of two parallel expanders incurs a small, incremental timing delay. Figure 16 shows the APEX 20K parallel expanders.

Embedded System Block

The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode

Notes to Figure 21:

All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)APEX 20KE devices have four dedicated clocks. (2)

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Altera Corporation

For more information on APEX 20KE devices and CAM, see *Application* Note 119 (Implementing High-Speed Search Applications with APEX CAM).

Driving Signals to the ESB

ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic.

(1) APEX 20KE devices have four dedicated clocks.

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains							
Programmable Delays	Quartus II Logic Option						
Input Pin to Core Delay	Decrease input delay to internal cells						
Input Pin to Input Register Delay	Decrease input delay to input registers						
Core to Output Register Delay	Decrease input delay to output register						
Output Register t_{CO} Delay	Increase delay to output pin						
Clock Enable Delay	Increase clock enable delay						

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Clock Phase & Delay Adjustment

The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices.

Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

Note to Figure 30:

(1) The tI parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

Table 15. A	PEX 20K ClockLock & ClockBoost Parameters for -1	Speed-Grade	Devices (Part 1 d	of 2)
Symbol	Parameter	Min	Мах	Unit
f _{OUT}	Output frequency	25	180	MHz
f _{CLK1} (1)	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	180 (1)	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	90	MHz
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	48	MHz
t _{outduty}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2)		25,000 (3)	PPM
t _R	Input rise time		5	ns
t _F	Input fall time		5	ns
t _{LOCK}	Time required for ClockLock/ClockBoost to acquire lock (4)		10	μs

٦

Table 2	Table 29. APEX 20KE Device DC Operating Conditions Notes (7), (8), (9)										
Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
V _{IH}	High-level LVTTL, CMOS, or 3.3-V PCI input voltage		1.7, 0.5 × V _{CCIO} (10)		4.1	V					
V _{IL}	Low-level LVTTL, CMOS, or 3.3-V PCI input voltage		-0.5		0.8, 0.3 × V _{CCIO} (10)	V					
V _{OH}	3.3-V high-level LVTTL output voltage	I _{OH} = -12 mA DC, V _{CCIO} = 3.00 V (11)	2.4			V					
	3.3-V high-level LVCMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V (11)	V _{CCIO} – 0.2			V					
	3.3-V high-level PCI output voltage	I _{OH} = -0.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)	$0.9 imes V_{CCIO}$			V					
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (11)	2.1			V					
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (11)	2.0			V					
		I _{OH} = -2 mA DC, V _{CCIO} = 2.30 V (11)	1.7			V					
V _{OL}	3.3-V low-level LVTTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V <i>(12)</i>			0.4	V					
	3.3-V low-level LVCMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (<i>12</i>)			0.2	V					
	3.3-V low-level PCI output voltage	$I_{OL} = 1.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (12)			0.1 × V _{CCIO}	V					
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (<i>12</i>)			0.2	V					
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.4	V					
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.7	V					
I _I	Input pin leakage current	V ₁ = 4.1 to -0.5 V (13)	-10		10	μΑ					
I _{OZ}	Tri-stated I/O pin leakage current	V _O = 4.1 to -0.5 V (13)	-10		10	μA					
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -1 speed grade		10		mA					
		V ₁ = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA					
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (14)	20		50	kΩ					
	before and during configuration	V _{CCIO} = 2.375 V (14)	30		80	kΩ					
		V _{CCIO} = 1.71 V (14)	60		150	kΩ					

Figure 40. Synchronous Bidirectional Pin External Timing

Notes to Figure 40:

- (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software.
- (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells= Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells= ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade.

Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68.

Table 31. APEX 20K f _{MAX} Timing Parameters (Part 1 of 2)						
Symbol	Parameter					
t _{SU}	LE register setup time before clock					
t _H	LE register hold time after clock					
t _{CO}	LE register clock-to-output delay					
t _{LUT}	LUT delay for data-in					
t _{ESBRC}	ESB Asynchronous read cycle time					
t _{ESBWC}	ESB Asynchronous write cycle time					
t _{ESBWESU}	ESB WE setup time before clock when using input register					
t _{ESBDATASU}	ESB data setup time before clock when using input register					
t _{ESBDATAH}	ESB data hold time after clock when using input register					
t _{ESBADDRSU}	ESB address setup time before clock when using input registers					
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers					

Table 31. APEX 2	OK f _{MAX} Timing Parameters (Part 2 of 2)							
Symbol	Parameter							
t _{ESBDATACO2}	ESB clock-to-output delay without output registers							
t _{ESBDD}	ESB data-in to data-out delay for RAM mode							
t _{PD}	ESB macrocell input to non-registered output							
t _{PTERMSU}	ESB macrocell register setup time before clock							
t _{PTERMCO}	ESB macrocell register clock-to-output delay							
t _{F1-4}	Fanout delay using local interconnect							
t _{F5-20}	Fanout delay using MegaLab Interconnect							
t _{F20+}	Fanout delay using FastTrack Interconnect							
t _{CH}	Minimum clock high time from clock pin							
t _{CL}	Minimum clock low time from clock pin							
t _{CLRP}	LE clear pulse width							
t _{PREP}	LE preset pulse width							
t _{ESBCH}	Clock high time							
t _{ESBCL}	Clock low time							
t _{ESBWP}	Write pulse width							
t _{ESBRP}	Read pulse width							

Tables 32 and 33 describe APEX 20K external timing parameters.

Table 32. APEX 20K External Timing Parameters Note (1)						
Symbol	Clock Parameter					
t _{INSU}	Setup time with global clock at IOE register					
t _{INH}	Hold time with global clock at IOE register					
t _{оитсо}	Clock-to-output delay with global clock at IOE register					

Table 33. APEX 20K External Bidirectional Timing Parameters Note (1)							
Symbol	Parameter	Conditions					
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at same-row or same- column LE register						
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same-column LE register						
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 10 pF					
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 10 pF					
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate = off	C1 = 10 pF					

Table 41. EP20K200 f _{MAX} Timing Parameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Units	
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.5		0.6		0.8		ns	
t _H	0.7		0.8		1.0		ns	
t _{CO}		0.3		0.4		0.5	ns	
t _{LUT}		0.8		1.0		1.3	ns	
t _{ESBRC}		1.7		2.1		2.4	ns	
t _{ESBWC}		5.7		6.9		8.1	ns	
t _{ESBWESU}	3.3		3.9		4.6		ns	
t _{ESBDATASU}	2.2		2.7		3.1		ns	
t _{ESBDATAH}	0.6		0.8		0.9		ns	
t _{ESBADDRSU}	2.4		2.9		3.3		ns	
t _{ESBDATACO1}		1.3		1.6		1.8	ns	
t _{ESBDATACO2}		2.6		3.1		3.6	ns	
t _{ESBDD}		2.5		3.3		3.6	ns	
t _{PD}		2.5		3.0		3.6	ns	
t _{PTERMSU}	2.3		2.7		3.2		ns	
t _{PTERMCO}		1.5		1.8		2.1	ns	
t _{F1-4}		0.5		0.6		0.7	ns	
t _{F5-20}		1.6		1.7		1.8	ns	
t _{F20+}		2.2		2.2		2.3	ns	
t _{CH}	2.0		2.5		3.0		ns	
t _{CL}	2.0		2.5		3.0		ns	
t _{CLRP}	0.3		0.4		0.4		ns	
t _{PREP}	0.4		0.5		0.5		ns	
t _{ESBCH}	2.0		2.5		3.0		ns	
t _{ESBCL}	2.0		2.5		3.0		ns	
t _{ESBWP}	1.6		1.9		2.2		ns	
t _{ESBRP}	1.0		1.3		1.4		ns	

Notes to Tables 43 through 48:

- (1) This parameter is measured without using ClockLock or ClockBoost circuits.
- (2) This parameter is measured using ClockLock or ClockBoost circuits.

Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices.

Table 49. EP20K30E f _{MAX} LE Timing Microparameters									
Symbol	-1		-1 -2		-	Unit			
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.01		0.02		0.02		ns		
t _H	0.11		0.16		0.23		ns		
t _{CO}		0.32		0.45		0.67	ns		
t _{LUT}		0.85		1.20		1.77	ns		

Table 82. EP20K300E Minimum Pulse Width Timing Parameters									
Symbol	-	1	-2		-3	-3			
	Min	Max	Min	Max	Min	Max			
t _{CH}	1.25		1.43		1.67		ns		
t _{CL}	1.25		1.43		1.67		ns		
t _{CLRP}	0.19		0.26		0.35		ns		
t _{PREP}	0.19		0.26		0.35		ns		
t _{ESBCH}	1.25		1.43		1.67		ns		
t _{ESBCL}	1.25		1.43		1.67		ns		
t _{ESBWP}	1.25		1.71		2.28		ns		
t _{ESBRP}	1.01		1.38		1.84		ns		

Table 83. EP20K300E External Timing Parameters									
Symbol	-1		-2		-3		Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSU}	2.31		2.44		2.57		ns		
t _{INH}	0.00		0.00		0.00		ns		
t _{outco}	2.00	5.29	2.00	5.82	2.00	6.24	ns		
tINSUPLL	1.76		1.85		-		ns		
t _{INHPLL}	0.00		0.00		-		ns		
toutcopll	0.50	2.65	0.50	2.95	-	-	ns		

Table 84. EP20K300E External Bidirectional Timing Parameters									
Symbol	-1		-2		-3		Unit		
	Min	Max	Min	Мах	Min	Max			
t _{insubidir}	2.77		2.85		3.11		ns		
t _{inhbidir}	0.00		0.00		0.00		ns		
t _{outcobidir}	2.00	5.29	2.00	5.82	2.00	6.24	ns		
t _{XZBIDIR}		7.59		8.30		9.09	ns		
t _{ZXBIDIR}		7.59		8.30		9.09	ns		
t _{insubidirpll}	2.50		2.76		-		ns		
t _{inhbidirpll}	0.00		0.00		-		ns		
t _{outcobidirpll}	0.50	2.65	0.50	2.95	-	-	ns		
t _{XZBIDIRPLL}		5.00		5.43		-	ns		
t _{ZXBIDIRPLL}		5.00		5.43		-	ns		

Tables 97 through 102 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices.

Table 97. EP20K1000E f _{MAX} LE Timing Microparameters									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.25		0.25		0.25		ns		
t _H	0.25		0.25		0.25		ns		
t _{CO}		0.28		0.32		0.33	ns		
t _{LUT}		0.80		0.95		1.13	ns		