Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 416 | | Number of Logic Elements/Cells | 4160 | | Total RAM Bits | 53248 | | Number of I/O | 93 | | Number of Gates | 263000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k100efi144-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations - Altera MegaCore® functions and Altera Megafunction Partners Program (AMPPSM) megafunctions - NativeLinkTM integration with popular synthesis, simulation, and timing analysis tools - Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation - Supports popular revision-control software packages including PVCS, Revision Control System (RCS), and Source Code Control System (SCCS) | Device | 144-Pin
TQFP | 208-Pin
PQFP
RQFP | 240-Pin
PQFP
RQFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA | |------------|-----------------|-------------------------|-------------------------|-------------|-------------|-------------| | EP20K30E | 92 | 125 | | | | | | EP20K60E | 92 | 148 | 151 | 196 | | | | EP20K100 | 101 | 159 | 189 | 252 | | | | EP20K100E | 92 | 151 | 183 | 246 | | | | EP20K160E | 88 | 143 | 175 | 271 | | | | EP20K200 | | 144 | 174 | 277 | | | | EP20K200E | | 136 | 168 | 271 | 376 | | | EP20K300E | | | 152 | | 408 | | | EP20K400 | | | | | 502 | 502 | | EP20K400E | | | | | 488 | | | EP20K600E | | | | | 488 | | | EP20K1000E | | | | | 488 | | | EP20K1500E | | | | | 488 | | All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required. APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy. After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications. APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations. The Quartus II software provides NativeLink interfaces to other industry-standard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture. ## Logic Element The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5. Figure 5. APEX 20K Logic Element Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE. Figure 6. APEX 20K Carry Chain ### Cascade Chain With the cascade chain, the APEX 20K architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. Figure 7. APEX 20K Cascade Chain ## LE Operating Modes The APEX 20K LE can operate in one of the following three modes: - Normal mode - Arithmetic mode - Counter mode Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes. Figure 10. FastTrack Connection to Local Interconnect ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock. ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic. When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays. To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18. Figure 18. Deep Memory Block Implemented with Multiple ESBs The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19. Figure 19. APEX 20K ESB Implementing Dual-Port RAM Figure 23. APEX 20KE CAM Block Diagram CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management. The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance. When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs. CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches. The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words. The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations. CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required. Figure 29. APEX 20KE I/O Banks ### Notes to Figure 29: - For more information on placing I/O pins in LVDS blocks, refer to the Guidelines for Using LVDS Blocks section in Application Note 120 (Using LVDS in APEX 20KE Devices). - (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V. ## **Power Sequencing & Hot Socketing** Because APEX 20K and APEX 20KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies may be powered in any order. For more information, please refer to the "Power Sequencing Considerations" section in the *Configuring APEX 20KE & APEX 20KC Devices* chapter of the *Configuration Devices Handbook*. Signals can be driven into APEX 20K devices before and during power-up without damaging the device. In addition, APEX 20K devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20K and APEX 20KE devices operate as specified by the user. Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out. # MultiVolt I/O Interface The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems. | Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support | | | | | | | | | | |---|--------------------------------------|--------------|--------------|--------------|-----|-----|--|--|--| | V _{CCIO} (V) | Input Signals (V) Output Signals (V) | | | | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | | 2.5 | ✓ | √ (1) | √ (1) | ✓ | | | | | | | 3.3 | ✓ | ✓ | √ (1) | √ (2) | ✓ | ✓ | | | | #### Notes to Table 12: - (1) The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO} . - (2) When $V_{\rm CCIO}$ = 3.3 V, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs. Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor. ## IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration. | Table 19. APEX 20K JT | Table 19. APEX 20K JTAG Instructions | | | | | | | |----------------------------|--|--|--|--|--|--|--| | JTAG Instruction | Description | | | | | | | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer. | | | | | | | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | | | | BYPASS (1) | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | | | | | | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | | | | | | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | | | | | | | ICR Instructions | Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster TM or ByteBlasterMV TM download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor. | | | | | | | | SignalTap Instructions (1) | Monitors internal device operation with the SignalTap embedded logic analyzer. | | | | | | | ### Note to Table 19: (1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions. Table 22 shows the JTAG timing parameters and values for APEX 20K devices | Table 22. APEX 20K JTAG Timing Parameters & Values | | | | | | | | | | |--|--|-----|-----|------|--|--|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | | | t _{JCP} | TCK clock period | 100 | | ns | | | | | | | t _{JCH} | TCK clock high time | 50 | | ns | | | | | | | t_{JCL} | TCK clock low time | 50 | | ns | | | | | | | t _{JPSU} | JTAG port setup time | 20 | | ns | | | | | | | t _{JPH} | JTAG port hold time | 45 | | ns | | | | | | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | | | | | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | | | | | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | | | | | | t _{JSSU} | Capture register setup time | 20 | | ns | | | | | | | t _{JSH} | Capture register hold time | 45 | | ns | | | | | | | t _{JSCO} | Update register clock to output | | 35 | ns | | | | | | | t _{JSZX} | Update register high impedance to valid output | | 35 | ns | | | | | | | t _{JSXZ} | Update register valid output to high impedance | | 35 | ns | | | | | | For more information, see the following documents: - Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) - Jam Programming & Test Language Specification ## **Generic Testing** Each APEX 20K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20K devices are made under conditions equivalent to those shown in Figure 32. Multiple test patterns can be used to configure devices during all stages of the production flow. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|---|--|-----------------------------------|-----|-----------------------------------|------| | V _{IH} | High-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | 1.7, 0.5 × V _{CCIO} (10) | | 4.1 | V | | V _{IL} | Low-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | -0.5 | | 0.8, 0.3 × V _{CCIO} (10) | V | | V _{OH} | 3.3-V high-level LVTTL output voltage | I _{OH} = -12 mA DC,
V _{CCIO} = 3.00 V (11) | 2.4 | | | V | | | 3.3-V high-level LVCMOS output voltage | $I_{OH} = -0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (11)$ | V _{CCIO} - 0.2 | | | V | | V _{OL} 3 | 3.3-V high-level PCI output voltage | $I_{OH} = -0.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$
(11) | 0.9 × V _{CCIO} | | | V | | | 2.5-V high-level output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 2.30 V (11) | 2.1 | | | V | | | | $I_{OH} = -1 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 2.0 | | | V | | | | $I_{OH} = -2 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 1.7 | | | V | | V _{OL} | 3.3-V low-level LVTTL output voltage | I_{OL} = 12 mA DC,
V_{CCIO} = 3.00 V (12) | | | 0.4 | V | | | 3.3-V low-level LVCMOS output voltage | $I_{OL} = 0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (12)$ | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | $I_{OL} = 1.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$
(12) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.2 | V | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.4 | V | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.7 | V | | I _I | Input pin leakage current | V _I = 4.1 to -0.5 V (13) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_0 = 4.1 \text{ to } -0.5 \text{ V } (13)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby)
(All ESBs in power-down mode) | $V_{I} =$ ground, no load, no toggling inputs, -1 speed grade | | 10 | | mA | | | | V _I = ground, no load, no
toggling inputs,
-2, -3 speed grades | | 5 | | mA | | R _{CONF} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 V (14) | 20 | | 50 | kΩ | | | before and during configuration | V _{CCIO} = 2.375 V (14) | 30 | | 80 | kΩ | | | | V _{CCIO} = 1.71 V (14) | 60 | | 150 | kΩ | | Symbol | Parameter | Conditions | | | | |----------------------------|---|------------|--|--|--| | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at LAB adjacent Input Register | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at LAB adjacent Input Register | | | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE output register | | | | | | t _{XZBIDIR} | Synchronous Output Enable Register to output buffer disable delay | C1 = 10 pF | | | | | t _{ZXBIDIR} | Synchronous Output Enable Register output buffer enable delay | C1 = 10 pF | | | | | t _{INSUBIDIRPLL} | Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register | | | | | | t _{INHBIDIRPLL} | Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register | | | | | | [†] OUTCOBIDIRPLL | Clock-to-output delay for bidirectional pins with PLL clock at IOE output register | C1 = 10 pF | | | | | t _{XZBIDIRPLL} | Synchronous Output Enable Register to output buffer disable delay with PLL | C1 = 10 pF | | | | | t _{ZXBIDIRPLL} | Synchronous Output Enable Register output buffer enable delay with PLL | C1 = 10 pF | | | | Note to Tables 38 and 39: ⁽¹⁾ These timing parameters are sample-tested only. ### Notes to Tables 43 through 48: - (1) This parameter is measured without using ClockLock or ClockBoost circuits. - (2) This parameter is measured using ClockLock or ClockBoost circuits. Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices. | Table 49. EP20K30E f _{MAX} LE Timing Microparameters | | | | | | | | | | |---|------|------|------|------|------|------|----|--|--| | Symbol | -1 | | - | 2 | -; | Unit | | | | | | Min | Max | Min | Max | Min | Max | 7 | | | | t _{SU} | 0.01 | | 0.02 | | 0.02 | | ns | | | | t _H | 0.11 | | 0.16 | | 0.23 | | ns | | | | t _{CO} | | 0.32 | | 0.45 | | 0.67 | ns | | | | t _{LUT} | | 0.85 | | 1.20 | | 1.77 | ns | | | Tables 67 through 72 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K160E APEX 20KE devices. | Table 67. EP20K160E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |--|------|------|------|------|------|------|----|--|--|--| | Symbol | - | -1 | | -2 | - | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{SU} | 0.22 | | 0.24 | | 0.26 | | ns | | | | | t _H | 0.22 | | 0.24 | | 0.26 | | ns | | | | | t _{CO} | | 0.25 | | 0.31 | | 0.35 | ns | | | | | t _{LUT} | | 0.69 | | 0.88 | | 1.12 | ns | | | | | Symbol | - | 1 | | -2 | | 3 | Unit | |-------------------------|-------|------|-------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.68 | | 2.06 | | 2.24 | ns | | t _{ESBSRC} | | 2.27 | | 2.77 | | 3.18 | ns | | t _{ESBAWC} | | 3.10 | | 3.86 | | 4.50 | ns | | t _{ESBSWC} | | 2.90 | | 3.67 | | 4.21 | ns | | t _{ESBWASU} | 0.55 | | 0.67 | | 0.74 | | ns | | t _{ESBWAH} | 0.36 | | 0.46 | | 0.48 | | ns | | t _{ESBWDSU} | 0.69 | | 0.83 | | 0.95 | | ns | | t _{ESBWDH} | 0.36 | | 0.46 | | 0.48 | | ns | | t _{ESBRASU} | 1.61 | | 1.90 | | 2.09 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.01 | | ns | | t _{ESBWESU} | 1.42 | | 1.71 | | 2.01 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.06 | | -0.07 | | 0.05 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.11 | | 0.13 | | 0.31 | | ns | | t _{ESBRADDRSU} | 0.18 | | 0.23 | | 0.39 | | ns | | t _{ESBDATACO1} | | 1.09 | | 1.35 | | 1.51 | ns | | t _{ESBDATACO2} | | 2.19 | | 2.75 | | 3.22 | ns | | t _{ESBDD} | | 2.75 | | 3.41 | | 4.03 | ns | | t _{PD} | | 1.58 | | 1.97 | | 2.33 | ns | | t _{PTERMSU} | 1.00 | | 1.22 | | 1.51 | | ns | | t _{PTERMCO} | | 1.10 | | 1.37 | | 1.09 | ns | | Table 75. EP20K200E f _{MAX} Routing Delays | | | | | | | | | | | |---|-----|------|-----|------|-----|------|----|--|--|--| | Symbol | - | 1 | | -2 | -3 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.25 | | 0.27 | | 0.29 | ns | | | | | t _{F5-20} | | 1.02 | | 1.20 | | 1.41 | ns | | | | | t _{F20+} | | 1.99 | | 2.23 | | 2.53 | ns | | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |--------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CLRP} | 0.18 | | 0.26 | | 0.34 | | ns | | t _{PREP} | 0.18 | | 0.26 | | 0.34 | | ns | | t _{ESBCH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBCL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBWP} | 1.17 | | 1.68 | | 2.18 | | ns | | t _{ESBRP} | 0.95 | | 1.35 | | 1.76 | | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |----------------------|----------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.74 | | 2.74 | | 2.87 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.51 | 2.00 | 6.06 | 2.00 | 6.61 | ns | | t _{INSUPLL} | 1.86 | | 1.96 | | - | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | toutcople | 0.50 | 2.62 | 0.50 | 2.91 | - | - | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |---------------------------|----------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 0.64 | | 0.98 | | 1.08 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.51 | 2.00 | 6.06 | 2.00 | 6.61 | ns | | t _{XZBIDIR} | | 6.10 | | 6.74 | | 7.10 | ns | | t _{ZXBIDIR} | | 6.10 | | 6.74 | | 7.10 | ns | | t _{INSUBIDIRPLL} | 2.26 | | 2.68 | | = | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | = | | ns | | toutcobidirpll | 0.50 | 2.62 | 0.50 | 2.91 | = | - | ns | | ^t xzbidirpll | | 3.21 | | 3.59 | | - | ns | | tzxbidirpll | | 3.21 | | 3.59 | | - | ns |