

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	416
Number of Logic Elements/Cells	4160
Total RAM Bits	53248
Number of I/O	151
Number of Gates	263000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k100eqc208-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Additiona	al APEX 20K De	vice Features	Note (1)			
Feature	EP20K300E	EP20K400	EP20K400E	EP20K600E	EP20K1000E	EP20K1500E
Maximum system gates	728,000	1,052,000	1,052,000	1,537,000	1,772,000	2,392,000
Typical gates	300,000	400,000	400,000	600,000	1,000,000	1,500,000
LEs	11,520	16,640	16,640	24,320	38,400	51,840
ESBs	72	104	104	152	160	216
Maximum RAM bits	147,456	212,992	212,992	311,296	327,680	442,368
Maximum macrocells	1,152	1,664	1,664	2,432	2,560	3,456
Maximum user I/O pins	408	502	488	588	708	808

Note to Tables 1 and 2:

(1) The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates.

Additional Features

- Designed for low-power operation
 - 1.8-V and 2.5-V supply voltage (see Table 3)
 - MultiVoltTM I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
 - ESB offering programmable power-saving mode

Feature		Device
	EP20K100 EP20K200 EP20K400	EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E
Internal supply voltage (V _{CCINT})	2.5 V	1.8 V
MultiVolt I/O interface voltage levels (V _{CCIO})	2.5 V, 3.3 V, 5.0 V	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)

Note to Table 3:

(1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor.

- Flexible clock management circuitry with up to four phase-locked loops (PLLs)
 - Built-in low-skew clock tree
 - Up to eight global clock signals
 - ClockLock[®] feature reducing clock delay and skew
 - ClockBoost[®] feature providing clock multiplication and division
 - ClockShift™ programmable clock phase and delay shifting

Powerful I/O features

- Compliant with peripheral component interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V operation at 33 or 66 MHz and 32 or 64 bits
- Support for high-speed external memories, including DDR SDRAM and ZBT SRAM (ZBT is a trademark of Integrated Device Technology, Inc.)
- Bidirectional I/O performance ($t_{CO} + t_{SU}$) up to 250 MHz
- LVDS performance up to 840 Mbits per channel
- Direct connection from I/O pins to local interconnect providing fast t_{CO} and t_{SU} times for complex logic
- MultiVolt I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
- Programmable clamp to V_{CCIO}
- Individual tri-state output enable control for each pin
- Programmable output slew-rate control to reduce switching noise
- Support for advanced I/O standards, including low-voltage differential signaling (LVDS), LVPECL, PCI-X, AGP, CTT, stubseries terminated logic (SSTL-3 and SSTL-2), Gunning transceiver logic plus (GTL+), and high-speed terminated logic (HSTL Class I)
- Pull-up on I/O pins before and during configuration

Advanced interconnect structure

- Four-level hierarchical FastTrack[®] Interconnect structure providing fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect

Advanced packaging options

- Available in a variety of packages with 144 to 1,020 pins (see Tables 4 through 7)
- FineLine BGA® packages maximize board space efficiency

Advanced software support

 Software design support and automatic place-and-route provided by the Altera® Quartus® II development system for

Feature	APEX 20K Devices	APEX 20KE Devices
MultiCore system integration	Full support	Full support
SignalTap logic analysis	Full support	Full support
32/64-Bit, 33-MHz PCI	Full compliance in -1, -2 speed grades	Full compliance in -1, -2 speed grades
32/64-Bit, 66-MHz PCI	-	Full compliance in -1 speed grade
MultiVolt I/O	2.5-V or 3.3-V V _{CCIO} V _{CCIO} selected for device Certain devices are 5.0-V tolerant	1.8-V, 2.5-V, or 3.3-V V _{CCIO} V _{CCIO} selected block-by-block 5.0-V tolerant with use of external resistor
ClockLock support	Clock delay reduction 2× and 4× clock multiplication	Clock delay reduction $m/(n \times v)$ or $m/(n \times k)$ clock multiplication Drive ClockLock output off-chip External clock feedback ClockShift LVDS support Up to four PLLs ClockShift, clock phase adjustment
Dedicated clock and input pins	Six	Eight
I/O standard support	2.5-V, 3.3-V, 5.0-V I/O 3.3-V PCI Low-voltage complementary metal-oxide semiconductor (LVCMOS) Low-voltage transistor-to-transistor logic (LVTTL)	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O 2.5-V I/O 3.3-V PCI and PCI-X 3.3-V Advanced Graphics Port (AGP) Center tap terminated (CTT) GTL+ LVCMOS LVTTL True-LVDS and LVPECL data pins (in EP20K300E and larger devices) LVDS and LVPECL signaling (in all BGA and FineLine BGA devices) LVDS and LVPECL data pins up to 156 Mbps (in -1 speed grade devices) HSTL Class I PCI-X SSTL-2 Class I and II SSTL-3 Class I and II
Memory support	Dual-port RAM FIFO RAM ROM	CAM Dual-port RAM FIFO RAM ROM

The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NoT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NoT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

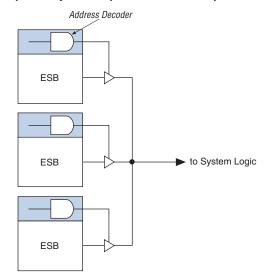
The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

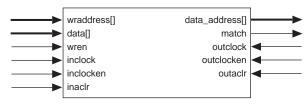
ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays.

To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18.




Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

Figure 19. APEX 20K ESB Implementing Dual-Port RAM

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

For more information on APEX 20KE devices and CAM, see *Application Note 119 (Implementing High-Speed Search Applications with APEX CAM).*

Driving Signals to the ESB

ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic.

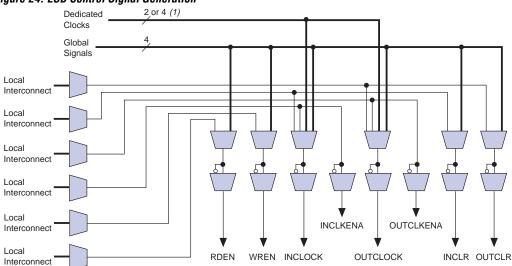


Figure 24. ESB Control Signal Generation

Note to Figure 24:

(1) APEX 20KE devices have four dedicated clocks.

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

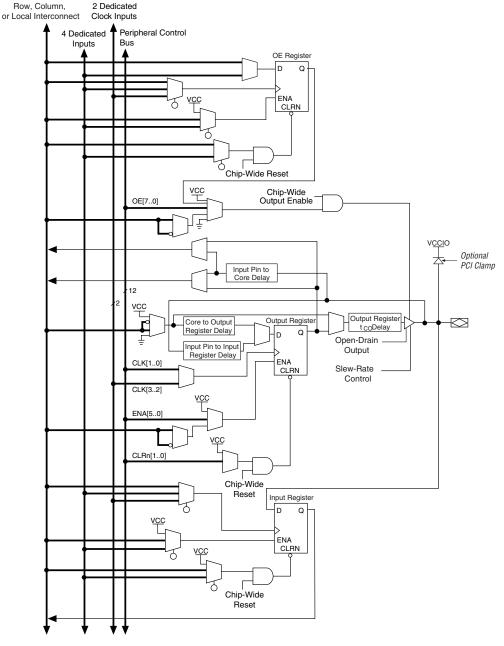


Figure 25. APEX 20K Bidirectional I/O Registers Note (1)

Note to Figure 25:

(1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect.

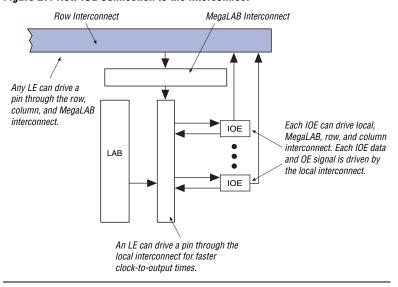


Figure 27. Row IOE Connection to the Interconnect

Notes to Table 16:

- (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The f_{CLKDEV} parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation.

Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices.

Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1)						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _R	Input rise time				5	ns
t _F	Input fall time				5	ns
t _{INDUTY}	Input duty cycle		40		60	%
t _{INJITTER}	Input jitter peak-to-peak				2% of input period	peak-to- peak
t _{OUTJITTER}	Jitter on ClockLock or ClockBoost- generated clock				0.35% of output period	RMS
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		45		55	%
t _{LOCK} (2), (3)	Time required for ClockLock or ClockBoost to acquire lock				40	μs

Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1)							
Symbol	Parameter	I/O Standard	I/O Standard -1X Speed Grade -2X Speed Grade		d Grade	Units	
			Min	Max	Min	Max	
f _{IN}	Input clock frequency	3.3-V LVTTL	1.5	290	1.5	257	MHz
		2.5-V LVTTL	1.5	281	1.5	250	MHz
		1.8-V LVTTL	1.5	272	1.5	243	MHz
		GTL+	1.5	303	1.5	261	MHz
		SSTL-2 Class	1.5	291	1.5	253	MHz
		SSTL-2 Class	1.5	291	1.5	253	MHz
		SSTL-3 Class	1.5	300	1.5	260	MHz
		SSTL-3 Class	1.5	300	1.5	260	MHz
		LVDS	1.5	420	1.5	350	MHz

Notes to Tables 17 and 18:

- All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications
 are not met, creating an erroneous clock within the device.
- (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz ð f_{VCO} ð 840 MHz for LVDS mode.

SignalTap Embedded Logic Analyzer

APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured.

Table 36. APEX 20KE Routing Timing Microparameters Note (1)					
Symbol Parameter					
t _{F1-4}	Fanout delay using Local Interconnect				
t _{F5-20}	Fanout delay estimate using MegaLab Interconnect				
t _{F20+}	Fanout delay estimate using FastTrack Interconnect				

Note to Table 36:

(1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

Table 37. APEX 20KE Functional Timing Microparameters					
Symbol Parameter					
TCH	Minimum clock high time from clock pin				
TCL	Minimum clock low time from clock pin				
TCLRP	LE clear Pulse Width				
TPREP	LE preset pulse width				
TESBCH	Clock high time for ESB				
TESBCL	Clock low time for ESB				
TESBWP	Write pulse width				
TESBRP	Read pulse width				

Tables 38 and 39 describe the APEX 20KE external timing parameters.

Table 38. APEX 20KE External Timing Parameters Note (1)					
Symbol	Clock Parameter	Conditions			
t _{INSU}	Setup time with global clock at IOE input register				
t _{INH}	Hold time with global clock at IOE input register				
t _{OUTCO}	Clock-to-output delay with global clock at IOE output register	C1 = 10 pF			
t _{INSUPLL}	Setup time with PLL clock at IOE input register				
t _{INHPLL}	Hold time with PLL clock at IOE input register				
t _{OUTCOPLL}	Clock-to-output delay with PLL clock at IOE output register	C1 = 10 pF			

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	1.9		2.3		2.6		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns
t _{INSUBIDIR} (2)	1.1		1.2		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (2)	0.5	2.7	0.5	3.1	-	_	ns
t _{XZBIDIR} (2)		4.3		5.0		_	ns
t _{ZXBIDIR} (2)		4.3		5.0		_	ns

Table 47. EP20K400 External Timing Parameters									
Symbol	-1 Speed Grade		-2 Spec	-2 Speed Grade		-3 Speed Grade			
	Min	Max	Min	Max	Min	Max			
t _{INSU} (1)	1.4		1.8		2.0		ns		
t _{INH} (1)	0.0		0.0		0.0		ns		
t _{OUTCO} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns		
t _{INSU} (2)	0.4		1.0		-		ns		
t _{INH} (2)	0.0		0.0		_		ns		
t _{OUTCO} (2)	0.5	3.1	0.5	4.1	_	_	ns		

Table 48. EP20K400 External Bidirections	I Timina	Parameters 1 4 1
--	----------	------------------

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spe	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	1.4		1.8		2.0		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns
t _{XZBIDIR} (1)		7.3		8.9		10.3	ns
t _{ZXBIDIR} (1)		7.3		8.9		10.3	ns
t _{INSUBIDIR} (2)	0.5		1.0		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
toutcobidir (2)	0.5	3.1	0.5	4.1	-	-	ns
t _{XZBIDIR} (2)		6.2		7.6		-	ns
t _{ZXBIDIR} (2)		6.2		7.6		_	ns

Symbol	-	1	-	2	-	3	Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR}	2.77		2.91		3.11		ns	
t _{INHBIDIR}	0.00		0.00		0.00		ns	
toutcobidir	2.00	4.84	2.00	5.31	2.00	5.81	ns	
t _{XZBIDIR}		6.47		7.44		8.65	ns	
t _{ZXBIDIR}		6.47		7.44		8.65	ns	
t _{INSUBIDIRPLL}	3.44		3.24		-		ns	
t _{INHBIDIRPLL}	0.00		0.00		-		ns	
^t OUTCOBIDIRPLL	0.50	3.37	0.50	3.69	-	-	ns	
txzbidirpll		5.00		5.82		-	ns	
t _{ZXBIDIRPLL}		5.00		5.82		-	ns	

Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices.

Table 61. EP20K100E f _{MAX} LE Timing Microparameters							
Symbol	-1		-	2	-3		Unit
	Min	Max	Min	Max	Min	Max	-
t _{SU}	0.25		0.25		0.25		ns
t _H	0.25		0.25		0.25		ns
t _{CO}		0.28		0.28		0.34	ns
t _{LUT}		0.80		0.95		1.13	ns

Table 62. EP20K	I GOL IMAX LOL	, Thinny Miles	1		T		1
Symbol	-	1		-2	-:	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.61		1.84		1.97	ns
t _{ESBSRC}		2.57		2.97		3.20	ns
t _{ESBAWC}		0.52		4.09		4.39	ns
t _{ESBSWC}		3.17		3.78		4.09	ns
t _{ESBWASU}	0.56		6.41		0.63		ns
t _{ESBWAH}	0.48		0.54		0.55		ns
t _{ESBWDSU}	0.71		0.80		0.81		ns
t _{ESBWDH}	.048		0.54		0.55		ns
t _{ESBRASU}	1.57		1.75		1.87		ns
t _{ESBRAH}	0.00		0.00		0.20		ns
t _{ESBWESU}	1.54		1.72		1.80		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.16		-0.20		-0.20		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.12		0.08		0.13		ns
t _{ESBRADDRSU}	0.17		0.15		0.19		ns
t _{ESBDATACO1}		1.20		1.39		1.52	ns
t _{ESBDATACO2}		2.54		2.99		3.22	ns
t _{ESBDD}		3.06		3.56		3.85	ns
t _{PD}		1.73		2.02		2.20	ns
t _{PTERMSU}	1.11		1.26		1.38		ns
t _{PTERMCO}		1.19		1.40		1.08	ns

Table 63. EP20K100E f _{MAX} Routing Delays								
Symbol	ol -1 -2		-2	-;	3	Unit		
	Min	Max	Min	Max	Min	Max	7	
t _{F1-4}		0.24		0.27		0.29	ns	
t _{F5-20}		1.04		1.26		1.52	ns	
t _{F20+}		1.12		1.36		1.86	ns	

Symbol Symbol	OK100E Minin		-	arameters 2		 3	Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	2.00		2.00		2.00		ns
t _{CL}	2.00		2.00		2.00		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	2.00		2.00		2.00		ns
t _{ESBCL}	2.00		2.00		2.00		ns
t _{ESBWP}	1.29		1.53		1.66		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Symbol -1	1	-	-2	-3	}	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.23		2.32		2.43		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	4.86	2.00	5.35	2.00	5.84	ns
t _{INSUPLL}	1.58		1.66		-		ns
t _{INHPLL}	0.00		0.00		=		ns
t _{OUTCOPLL}	0.50	2.96	0.50	3.29	-	-	ns

Symbol	-	1	-	2	-	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.74		2.96		3.19		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	4.86	2.00	5.35	2.00	5.84	ns
t _{XZBIDIR}		5.00		5.48		5.89	ns
t _{ZXBIDIR}		5.00		5.48		5.89	ns
t _{INSUBIDIRPLL}	4.64		5.03		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	2.96	0.50	3.29	-	-	ns
t _{XZBIDIRPLL}		3.10		3.42		-	ns
tzxbidirpll		3.10		3.42		-	ns

Tables 85 through 90 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K400E APEX 20KE devices.

Table 85. EP20K400E f _{MAX} LE Timing Microparameters								
Symbol	-1 Spee	d Grade	-2 Spec	ed Grade	-3 Spee	Unit		
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.23		0.23		0.23		ns	
t _H	0.23		0.23		0.23		ns	
t _{CO}		0.25		0.29		0.32	ns	
t _{LUT}		0.70		0.83		1.01	ns	

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.67		1.91		1.99	ns
t _{ESBSRC}		2.30		2.66		2.93	ns
t _{ESBAWC}		3.09		3.58		3.99	ns
t _{ESBSWC}		3.01		3.65		4.05	ns
t _{ESBWASU}	0.54		0.63		0.65		ns
t _{ESBWAH}	0.36		0.43		0.42		ns
t _{ESBWDSU}	0.69		0.77		0.84		ns
t _{ESBWDH}	0.36		0.43		0.42		ns
t _{ESBRASU}	1.61		1.77		1.86		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.35		1.47		1.61		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.18		-0.30		-0.27		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	-0.02		-0.11		-0.03		ns
t _{ESBRADDRSU}	0.06		-0.01		-0.05		ns
t _{ESBDATACO1}		1.16		1.40		1.54	ns
t _{ESBDATACO2}		2.18		2.55		2.85	ns
t _{ESBDD}		2.73		3.17		3.58	ns
t _{PD}		1.57		1.83		2.07	ns
t _{PTERMSU}	0.92		0.99		1.18		ns
t _{PTERMCO}		1.18		1.43		1.17	ns

SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up.

Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 111. Data Sources for Configura	ntion
Configuration Scheme	Data Source
Configuration device	EPC1, EPC2, EPC16 configuration devices
Passive serial (PS)	MasterBlaster or ByteBlasterMV download cable or serial data source
Passive parallel asynchronous (PPA)	Parallel data source
Passive parallel synchronous (PPS)	Parallel data source
JTAG	MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File

For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information