Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 416 | | Number of Logic Elements/Cells | 4160 | | Total RAM Bits | 53248 | | Number of I/O | 151 | | Number of Gates | 263000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k100eqc208-2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # **Logic Array Block** Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB. APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect. Altera Corporation 11 can drive two local interconnect areas. #### Normal Mode The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II software Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers. ### Arithmetic Mode The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used. #### Counter Mode The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs. Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other. Row Interconnect MegaLAB Interconnect Column Interconnect Interconnect Figure 11. Driving the FastTrack Interconnect APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect. | Source | Destination | | | | | | | | | |----------------------------------|----------------|-------------------|----------|----------|-----------------------|-------------------------|----------------------------------|-------------------------------------|-------------------------| | | Row
I/O Pin | Column
I/O Pin | LE | ESB | Local
Interconnect | MegaLAB
Interconnect | Row
FastTrack
Interconnect | Column
FastTrack
Interconnect | FastRow
Interconnect | | Row I/O Pin | | | | | ✓ | ✓ | ✓ | ✓ | | | Column I/O
Pin | | | | | | | | ✓ | √ (1) | | LE | | | | | ✓ | ✓ | ✓ | ✓ | | | ESB | | | | | ✓ | ✓ | ✓ | ✓ | | | Local
Interconnect | ✓ | ✓ | ✓ | ✓ | | | | | | | MegaLAB
Interconnect | | | | | ~ | | | | | | Row
FastTrack
Interconnect | | | | | | ✓ | | ✓ | | | Column | | | | | | ✓ | ✓ | | | | FastTrack
Interconnect | | | | | | | | | | | FastRow
Interconnect | | | | | ✓ (1) | | | | | Note to Table 9: (1) This connection is supported in APEX 20KE devices only. # **Product-Term Logic** The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals. In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode. Figure 14. APEX 20K Macrocell For registered functions, each macrocell register can be programmed individually to implement D, T, JK, or SR operation with programmable clock control. The register can be bypassed for combinatorial operation. During design entry, the designer specifies the desired register type; the Quartus II software then selects the most efficient register operation for each registered function to optimize resource utilization. The Quartus II software or other synthesis tools can also select the most efficient register operation automatically when synthesizing HDL designs. Each programmable register can be clocked by one of two ESB-wide clocks. The ESB-wide clocks can be generated from device dedicated clock pins, global signals, or local interconnect. Each clock also has an associated clock enable, generated from the local interconnect. The clock and clock enable signals are related for a particular ESB; any macrocell using a clock also uses the associated clock enable. If both the rising and falling edges of a clock are used in an ESB, both ESB-wide clock signals are used. ## Input/Output Clock Mode The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode. Figure 21. ESB in Input/Output Clock Mode Note (1) Notes to Figure 21: - (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. - (2) APEX 20KE devices have four dedicated clocks. # Single-Port Mode The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22. Figure 23. APEX 20KE CAM Block Diagram CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management. The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance. When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs. CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches. The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words. The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations. CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required. Figure 25. APEX 20K Bidirectional I/O Registers Note (1) Note to Figure 25: (1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. Figure 28 shows how a column IOE connects to the interconnect. Figure 28. Column IOE Connection to the Interconnect ## **Dedicated Fast I/O Pins** APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed. Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out. # MultiVolt I/O Interface The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems. | Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support | | | | | | | | | |--|----------|--------------|--------------|--------------|-----|----------|--|--| | V _{CCIO} (V) Input Signals (V) Output Signals (V) | | | | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | 2.5 | ✓ | √ (1) | √ (1) | ✓ | | | | | | 3.3 | ✓ | ✓ | √ (1) | √ (2) | ✓ | ✓ | | | #### Notes to Table 12: - (1) The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO} . - (2) When $V_{\rm CCIO}$ = 3.3 V, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs. Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor. | Table 18. | Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1) | | | | | | | | | |-----------------|--|--------------|---------|----------|-----------------|-----|-------|--|--| | Symbol | Parameter | I/O Standard | -1X Spe | ed Grade | -2X Speed Grade | | Units | | | | | | | Min | Max | Min | Max | | | | | f _{IN} | Input clock frequency | 3.3-V LVTTL | 1.5 | 290 | 1.5 | 257 | MHz | | | | | | 2.5-V LVTTL | 1.5 | 281 | 1.5 | 250 | MHz | | | | | | 1.8-V LVTTL | 1.5 | 272 | 1.5 | 243 | MHz | | | | | | GTL+ | 1.5 | 303 | 1.5 | 261 | MHz | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | | #### Notes to Tables 17 and 18: - All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first. - (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode. - (4) The PLL VCO operating range is 200 MHz δ f_{VCO} δ 840 MHz for LVDS mode. # SignalTap Embedded Logic Analyzer APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured. # IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration. | Table 19. APEX 20K JT | AG Instructions | |----------------------------|--| | JTAG Instruction | Description | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer. | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | BYPASS (1) | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | ICR Instructions | Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster TM or ByteBlasterMV TM download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor. | | SignalTap Instructions (1) | Monitors internal device operation with the SignalTap embedded logic analyzer. | #### Note to Table 19: (1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions. | Symbol | Parameter | Conditions | Min | Max | Unit | |--------------------|---|--------------------|------------------|-------------------|------| | V _{CCINT} | Supply voltage for internal logic and input buffers | (3), (4) | 1.71 (1.71) | 1.89 (1.89) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (3), (4) | 3.00 (3.00) | 3.60 (3.60) | V | | | Supply voltage for output buffers, 2.5-V operation | (3), (4) | 2.375
(2.375) | 2.625
(2.625) | V | | | Supply voltage for output buffers, 1.8-V operation | (3), (4) | 1.71 (1.71) | 1.89 (1.89) | V | | V _I | Input voltage | (5), (6) | -0.5 | 4.0 | V | | ٧o | Output voltage | | 0 | V _{CCIO} | ٧ | | TJ | Junction temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).* | Table 30. APEX 20KE Device Capacitance Note (15) | | | | | | | | | |--|--|-------------------------------------|-----|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | #### Notes to Tables 27 through 30: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle. Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10% - (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60. - (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V. - (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL. - (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (13) This value is specified for normal device operation. The value may vary during power-up. - (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}. - (15) Capacitance is sample-tested only. Figure 33 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance on APEX 20K devices. Figure 37. APEX 20KE f_{MAX} Timing Model | Table 36. APEX 20KE Routing Timing Microparameters Note (1) | | | | | | |---|--|--|--|--|--| | Symbol | Parameter | | | | | | t _{F1-4} | Fanout delay using Local Interconnect | | | | | | t _{F5-20} | Fanout delay estimate using MegaLab Interconnect | | | | | | t _{F20+} | Fanout delay estimate using FastTrack Interconnect | | | | | ## Note to Table 36: (1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. | Table 37. APEX 20KE Functional Timing Microparameters | | | | | | |---|--|--|--|--|--| | Symbol Parameter | | | | | | | TCH | Minimum clock high time from clock pin | | | | | | TCL | Minimum clock low time from clock pin | | | | | | TCLRP | LE clear Pulse Width | | | | | | TPREP | LE preset pulse width | | | | | | TESBCH | Clock high time for ESB | | | | | | TESBCL | Clock low time for ESB | | | | | | TESBWP | Write pulse width | | | | | | TESBRP | Read pulse width | | | | | Tables 38 and 39 describe the APEX 20KE external timing parameters. | Table 38. APEX 20KE External Timing Parameters Note (1) | | | | | | |---|--|------------|--|--|--| | Symbol | Clock Parameter | Conditions | | | | | t _{INSU} | Setup time with global clock at IOE input register | | | | | | t _{INH} | Hold time with global clock at IOE input register | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE output register | C1 = 10 pF | | | | | t _{INSUPLL} | Setup time with PLL clock at IOE input register | | | | | | t _{INHPLL} | Hold time with PLL clock at IOE input register | | | | | | t _{OUTCOPLL} | Clock-to-output delay with PLL clock at IOE output register | C1 = 10 pF | | | | Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices. | Table 55. EP20K60E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |---|------|------|------|------|------|------|----|--|--|--| | Symbol | -1 | | -2 | | - | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{SU} | 0.17 | | 0.15 | | 0.16 | | ns | | | | | t _H | 0.32 | | 0.33 | | 0.39 | | ns | | | | | t _{CO} | | 0.29 | | 0.40 | | 0.60 | ns | | | | | t _{LUT} | | 0.77 | | 1.07 | | 1.59 | ns | | | | | Table 62. EP20K | I GOL IMAX LOL | , iming mid | 1 | | Ī | | 1 | |-------------------------|----------------|-------------|-------|------|-------|------|------| | Symbol | - | 1 | , | -2 | | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.61 | | 1.84 | | 1.97 | ns | | t _{ESBSRC} | | 2.57 | | 2.97 | | 3.20 | ns | | t _{ESBAWC} | | 0.52 | | 4.09 | | 4.39 | ns | | t _{ESBSWC} | | 3.17 | | 3.78 | | 4.09 | ns | | t _{ESBWASU} | 0.56 | | 6.41 | | 0.63 | | ns | | t _{ESBWAH} | 0.48 | | 0.54 | | 0.55 | | ns | | t _{ESBWDSU} | 0.71 | | 0.80 | | 0.81 | | ns | | t _{ESBWDH} | .048 | | 0.54 | | 0.55 | | ns | | t _{ESBRASU} | 1.57 | | 1.75 | | 1.87 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.20 | | ns | | t _{ESBWESU} | 1.54 | | 1.72 | | 1.80 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.16 | | -0.20 | | -0.20 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.12 | | 0.08 | | 0.13 | | ns | | t _{ESBRADDRSU} | 0.17 | | 0.15 | | 0.19 | | ns | | t _{ESBDATACO1} | | 1.20 | | 1.39 | | 1.52 | ns | | t _{ESBDATACO2} | | 2.54 | _ | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.06 | _ | 3.56 | | 3.85 | ns | | t _{PD} | | 1.73 | | 2.02 | | 2.20 | ns | | t _{PTERMSU} | 1.11 | | 1.26 | | 1.38 | | ns | | t _{PTERMCO} | | 1.19 | | 1.40 | | 1.08 | ns | | Table 63. EP20K100E f _{MAX} Routing Delays | | | | | | | | | | | |---|-----|------|-----|------|-----|------|----|--|--|--| | Symbol | - | 1 | - | -2 | -; | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.24 | | 0.27 | | 0.29 | ns | | | | | t _{F5-20} | | 1.04 | | 1.26 | | 1.52 | ns | | | | | t _{F20+} | | 1.12 | | 1.36 | | 1.86 | ns | | | | | Symbol | -1 | | -2 | | -3 | | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.86 | | 3.24 | | 3.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 5.07 | 2.00 | 5.59 | 2.00 | 6.13 | ns | | t _{XZBIDIR} | | 7.43 | | 8.23 | | 8.58 | ns | | t _{ZXBIDIR} | | 7.43 | | 8.23 | | 8.58 | ns | | t _{INSUBIDIRPLL} | 4.93 | | 5.48 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 3.00 | 0.50 | 3.35 | - | - | ns | | t _{XZBIDIRPLL} | | 5.36 | | 5.99 | | - | ns | | t _{ZXBIDIRPLL} | | 5.36 | | 5.99 | | - | ns | Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices. | Table 73. EP20K200E f _{MAX} LE Timing Microparameters | | | | | | | | | | |--|------|------|------|------|------|------|------|--|--| | Symbol | -1 | | | -2 | -3 | | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{SU} | 0.23 | | 0.24 | | 0.26 | | ns | | | | t _H | 0.23 | | 0.24 | | 0.26 | | ns | | | | t _{CO} | | 0.26 | | 0.31 | | 0.36 | ns | | | | t _{LUT} | | 0.70 | | 0.90 | | 1.14 | ns | | | | Table 104. EP201 | K1500E f _{MAX} E | SB Timing M | icroparamete | rs | | | | |-------------------------|---------------------------|-------------|----------------|------|----------------|------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.78 | | 2.02 | | 1.95 | ns | | t _{ESBSRC} | | 2.52 | | 2.91 | | 3.14 | ns | | t _{ESBAWC} | | 3.52 | | 4.11 | | 4.40 | ns | | t _{ESBSWC} | | 3.23 | | 3.84 | | 4.16 | ns | | t _{ESBWASU} | 0.62 | | 0.67 | | 0.61 | | ns | | t _{ESBWAH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBWDSU} | 0.77 | | 0.79 | | 0.81 | | ns | | t _{ESBWDH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBRASU} | 1.74 | | 1.92 | | 1.85 | | ns | | t _{ESBRAH} | 0.00 | | 0.01 | | 0.23 | | ns | | t _{ESBWESU} | 2.07 | | 2.28 | | 2.41 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.25 | | 0.27 | | 0.29 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.11 | | 0.04 | | 0.11 | | ns | | t _{ESBRADDRSU} | 0.14 | | 0.11 | | 0.16 | | ns | | t _{ESBDATACO1} | | 1.29 | | 1.50 | | 1.63 | ns | | t _{ESBDATACO2} | | 2.55 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.12 | | 3.57 | | 3.85 | ns | | t _{PD} | | 1.84 | | 2.13 | | 2.32 | ns | | t _{PTERMSU} | 1.08 | | 1.19 | | 1.32 | | ns | | t _{PTERMCO} | | 1.31 | | 1.53 | | 1.66 | ns | | Table 105. EP20K1500E f _{MAX} Routing Delays | | | | | | | | | | | |---|---------|---------|---------|----------|---------|------|----|--|--|--| | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spee | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.28 | | 0.28 | | 0.28 | ns | | | | | t _{F5-20} | | 1.36 | | 1.50 | | 1.62 | ns | | | | | t _{F20+} | | 4.43 | | 4.48 | | 5.07 | ns | | | |