E·XFL

Intel - EP20K100ETC144-1 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	416
Number of Logic Elements/Cells	4160
Total RAM Bits	53248
Number of I/O	92
Number of Gates	263000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k100etc144-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	APEX 20K Devices	APFX 20KF Devices
32/64-Bit, 33-MHz PCI	grades	Full compliance in -1, -2 speed grades
32/64-Bit, 66-MHz PCI	-	Full compliance in -1 speed grade
MultiVolt I/O	2.5-V or 3.3-V V _{CCIO}	1.8-V, 2.5-V, or 3.3-V V _{CCIO}
	V _{CCIO} selected for device	V _{CCIO} selected block-by-block
	Certain devices are 5.0-V tolerant	5.0-V tolerant with use of external resistor
ClockLock support	Clock delay reduction	Clock delay reduction
	2× and 4× clock multiplication	$m/(n \times v)$ or $m/(n \times k)$ clock multiplication
		Drive ClockLock output off-chip
		External clock feedback
		ClockShift
		LVDS support
		Up to four PLLs
		ClockShift, clock phase adjustment
Dedicated clock and input pins	Six	Eight
I/O standard support	2.5-V, 3.3-V, 5.0-V I/O	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O
	3.3-V PCI	2.5-V I/O
	Low-voltage complementary	3.3-V PCI and PCI-X
	metal-oxide semiconductor	3.3-V Advanced Graphics Port (AGP)
	(LVCMOS)	Center tap terminated (CTT)
	Low-voltage transistor-to-transistor	GTL+
	logic (LVTTL)	LVCMOS
		True-LVDS and LVPECL data pins
		(In EP20K300E and larger devices)
		LVDS and LVPECL signaling (in all BGA
		and FineLine BGA devices)
		LVDS and LVPECL data pins up to
		156 Mbps (III - I speed grade devices)
		SSTL-3 Class Land II
Memory support	Dual-port BAM	CAM
	FIFO	Dual-port BAM
	BAM	FIFO
	BOM	BAM
		ROM

All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required.

APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy.

After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations.

The Quartus II software provides NativeLink interfaces to other industrystandard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture. APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins.

MegaLAB Structure

APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.

Embedded System Block

The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Figure 22. ESB in Single-Port Mode Note (1)

Notes to Figure 22:

All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.
APEX 20KE devices have four dedicated clocks.

Content-Addressable Memory

In APEX 20KE devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it.

CAM is used for high-speed search operations. When searching for data within a RAM block, the search is performed serially. Thus, finding a particular data word can take many cycles. CAM searches all addresses in parallel and outputs the address storing a particular word. When a match is found, a match flag is set high. Figure 23 shows the CAM block diagram.

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control

APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo Bit[™] option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

I/O Structure

The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently.

The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect.

Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2)						
Symbol	Parameter	Min	Max	Unit		
t _{SKEW}	Skew delay between related ClockLock/ClockBoost-generated clocks		500	ps		
t _{JITTER}	Jitter on ClockLock/ClockBoost-generated clock (5)		200	ps		
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps		

Notes to Table 15:

- (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz.
- (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time.
- (4) The jitter specification is measured under long-term observation.
- (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps.

Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices.

Symbol	Parameter	Min	Max	Unit	
f _{OUT}	Output frequency	25	170	MHz	
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	170	MHz	
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	80	MHz	
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	34	MHz	
t _{OUTDUTY}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%	
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1)		25,000 (2)	PPM	
t _R	Input rise time		5	ns	
t _F	Input fall time		5	ns	
t _{LOCK}	Time required for ClockLock/ ClockBoost to acquire lock (3)		10	μs	
t _{SKEW}	Skew delay between related ClockLock/ ClockBoost- generated clock	500	500	ps	
t _{JITTER}	Jitter on ClockLock/ ClockBoost-generated clock (4)		200	ps	
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps	

Table 16. APEX 20K ClockLock & ClockBoost Parameters for -2 Speed Grade Devices

Figure 35 shows the output drive characteristics of APEX 20KE devices.

Note to Figure 35:(1) These are transient (AC) currents.

Timing Model

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Table 31. APEX 2	OK f _{MAX} Timing Parameters (Part 2 of 2)				
Symbol	Parameter				
t _{ESBDATACO2}	ESB clock-to-output delay without output registers				
t _{ESBDD}	ESB data-in to data-out delay for RAM mode				
t _{PD}	ESB macrocell input to non-registered output				
t _{PTERMSU}	ESB macrocell register setup time before clock				
t _{PTERMCO}	ESB macrocell register clock-to-output delay				
t _{F1-4}	Fanout delay using local interconnect				
t _{F5-20}	Fanout delay using MegaLab Interconnect				
t _{F20+}	Fanout delay using FastTrack Interconnect				
t _{CH}	Minimum clock high time from clock pin				
t _{CL}	Minimum clock low time from clock pin				
t _{CLRP}	LE clear pulse width				
t _{PREP}	LE preset pulse width				
t _{ESBCH}	Clock high time				
t _{ESBCL}	Clock low time				
t _{ESBWP}	Write pulse width				
t _{ESBRP}	Read pulse width				

Tables 32 and 33 describe APEX 20K external timing parameters.

Table 32. APEX 20K External Timing Parameters Note (1)				
Symbol	Clock Parameter			
t _{INSU}	Setup time with global clock at IOE register			
t _{INH}	Hold time with global clock at IOE register			
t _{оитсо}	Clock-to-output delay with global clock at IOE register			

Table 33. APEX 20K External Bidirectional Timing Parameters Note (1)						
Symbol	Conditions					
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at same-row or same- column LE register					
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same-column LE register					
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 10 pF				
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 10 pF				
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate = off	C1 = 10 pF				

Table 36. APE	EX 20KE Routing Timing Microparameters Note (1)
Symbol	Parameter
t _{F1-4}	Fanout delay using Local Interconnect
t _{F5-20}	Fanout delay estimate using MegaLab Interconnect
t _{F20+}	Fanout delay estimate using FastTrack Interconnect

Note to Table 36:

 These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

Table 37. APEX 20KE Functional Timing Microparameters			
Symbol	Parameter		
ТСН	Minimum clock high time from clock pin		
TCL	Minimum clock low time from clock pin		
TCLRP	LE clear Pulse Width		
TPREP	LE preset pulse width		
TESBCH	Clock high time for ESB		
TESBCL	Clock low time for ESB		
TESBWP	Write pulse width		
TESBRP	Read pulse width		

Table 37. APEX 20KE Functional Timing Microparameters

Tables 38 and 39 describe the APEX 20KE external timing parameters.

Table 38. APEX 20KE External Timing Parameters Note (1)						
Symbol	Clock Parameter Condition					
t _{INSU}	Setup time with global clock at IOE input register					
t _{INH}	Hold time with global clock at IOE input register					
t _{оитсо}	Clock-to-output delay with global clock at IOE output register C1 = 10 pF					
t _{INSUPLL}	Setup time with PLL clock at IOE input register					
t _{INHPLL}	Hold time with PLL clock at IOE input register					
t _{OUTCOPLL}	Clock-to-output delay with PLL clock at IOE output register	C1 = 10 pF				

Table 43. EP20K100 External Timing Parameters								
Symbol	-1 Spe	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Мах	Min	Max	Min	Max		
t _{INSU} (1)	2.3		2.8		3.2		ns	
t _{INH} (1)	0.0		0.0		0.0		ns	
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns	
t _{INSU} (2)	1.1		1.2		-		ns	
t _{INH} (2)	0.0		0.0		-		ns	
t _{OUTCO} (2)	0.5	2.7	0.5	3.1	_	4.8	ns	

Table 44. EP20K100 External Bidirectional Timing Parameters							
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade	
	Min	Мах	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR}	2.0	4.5	2.0	4.9	2.0	6.6	ns
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns
t _{INSUBIDIR} (2)	1.0		1.2		-		ns
t _{inhbidir} (2)	0.0		0.0		-		ns
toutcobidir <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns
t _{XZBIDIR} (2)		4.3		5.0		-	ns
t _{ZXBIDIR} (2)		4.3		5.0		-	ns

Table 45. EP20K200 External Timing Parameters											
Symbol	-1 Spec	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade					
	Min	Max	Min	Мах	Min	Мах					
t _{INSU} (1)	1.9		2.3		2.6		ns				
t _{INH} (1)	0.0		0.0		0.0		ns				
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns				
t _{INSU} (2)	1.1		1.2		-		ns				
t _{INH} (2)	0.0		0.0		-		ns				
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns				

Table 50. EP20k	(30E f _{MAX} ESB	Timing Micro	parameters				
Symbol		-1		-2	-	-3	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		2.03		2.86		4.24	ns
t _{ESBSRC}		2.58		3.49		5.02	ns
t _{ESBAWC}		3.88		5.45		8.08	ns
t _{ESBSWC}		4.08		5.35		7.48	ns
t _{ESBWASU}	1.77		2.49		3.68		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.95		2.74		4.05		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.96		2.75		4.07		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.80		2.73		4.28		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.07		0.48		1.17		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.30		0.80		1.64		ns
t _{ESBRADDRSU}	0.37		0.90		1.78		ns
t _{ESBDATACO1}		1.11		1.32		1.67	ns
t _{ESBDATACO2}		2.65		3.73		5.53	ns
t _{ESBDD}		3.88		5.45		8.08	ns
t _{PD}		1.91		2.69		3.98	ns
t _{PTERMSU}	1.04		1.71		2.82		ns
t _{PTERMCO}		1.13		1.34		1.69	ns

Table 51. EP20K30E f_{MAX} Routing Delays

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.27		0.31	ns
t _{F5-20}		1.03		1.14		1.30	ns
t _{F20+}		1.42		1.54		1.77	ns

Table 52. EP20K30E Minimum Pulse Width Timing Parameters											
Symbol	-	1	-	-2			Unit				
	Min	Max	Min	Мах	Min	Max					
t _{CH}	0.55		0.78		1.15		ns				
t _{CL}	0.55		0.78		1.15		ns				
t _{CLRP}	0.22		0.31		0.46		ns				
t _{PREP}	0.22		0.31		0.46		ns				
t _{ESBCH}	0.55		0.78		1.15		ns				
t _{ESBCL}	0.55		0.78		1.15		ns				
t _{ESBWP}	1.43		2.01		2.97		ns				
t _{ESBRP}	1.15		1.62		2.39		ns				

Table 53. EP2	Table 53. EP20K30E External Timing Parameters											
Symbol	-	1		-2		}	Unit					
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.02		2.13		2.24		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	4.88	2.00	5.36	2.00	5.88	ns					
t _{INSUPLL}	2.11		2.23		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	2.60	0.50	2.88	-	-	ns					

Table 54. EP20K30E External Bidirectional Timing Parameters											
Symbol	-1		-2		-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{insubidir}	1.85		1.77		1.54		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
t _{outcobidir}	2.00	4.88	2.00	5.36	2.00	5.88	ns				
t _{XZBIDIR}		7.48		8.46		9.83	ns				
t _{ZXBIDIR}		7.48		8.46		9.83	ns				
t _{insubidirpll}	4.12		4.24		-		ns				
t _{inhbidirpll}	0.00		0.00		-		ns				
t _{outcobidirpll}	0.50	2.60	0.50	2.88	-	-	ns				
t _{xzbidirpll}		5.21		5.99		-	ns				
t _{ZXBIDIRPLL}		5.21		5.99		-	ns				

Table 72. EP20K16	Table 72. EP20K160E External Bidirectional Timing Parameters											
Symbol	-1		-:	2	-	Unit						
	Min	Max	Min	Max	Min	Max						
t _{insubidir}	2.86		3.24		3.54		ns					
t _{inhbidir}	0.00		0.00		0.00		ns					
t _{outcobidir}	2.00	5.07	2.00	5.59	2.00	6.13	ns					
t _{XZBIDIR}		7.43		8.23		8.58	ns					
t _{ZXBIDIR}		7.43		8.23		8.58	ns					
t _{insubidirpll}	4.93		5.48		-		ns					
t _{inhbidirpll}	0.00		0.00		-		ns					
toutcobidirpll	0.50	3.00	0.50	3.35	-	-	ns					
t _{XZBIDIRPLL}		5.36		5.99		-	ns					
t _{ZXBIDIRPLL}		5.36		5.99		-	ns					

Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 73. EP20K200E f _{MAX} LE Timing Microparameters											
Symbol	-1			2 -:		3	Unit				
	Min	Max	Min	Max	Min	Max					
t _{SU}	0.23		0.24		0.26		ns				
t _H	0.23		0.24		0.26		ns				
t _{CO}		0.26		0.31		0.36	ns				
t _{LUT}		0.70		0.90		1.14	ns				

Altera Corporation

APEX 20K Programmable Logic Device Family Data Sheet

Table 87. EP20K400E f _{MAX} Routing Delays											
Symbol	-1 Spe	ed Grade	-2 Spe	ed Grade	-3 Speed Grade		Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.25		0.25		0.26	ns				
t _{F5-20}		1.01		1.12		1.25	ns				
t _{F20+}		3.71		3.92		4.17	ns				

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.36		2.22		2.35		ns	
t _{CL}	1.36		2.26		2.35		ns	
t _{CLRP}	0.18		0.18		0.19		ns	
t _{PREP}	0.18		0.18		0.19		ns	
t _{ESBCH}	1.36		2.26		2.35		ns	
t _{ESBCL}	1.36		2.26		2.35		ns	
t _{ESBWP}	1.17		1.38		1.56		ns	
t _{ESBRP}	0.94		1.09		1.25		ns	

Table 89. EP2	Table 89. EP20K400E External Timing Parameters												
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		d Grade	Unit						
	Min	Max	Min	Max	Min	Max							
t _{INSU}	2.51		2.64		2.77		ns						
t _{INH}	0.00		0.00		0.00		ns						
t _{outco}	2.00	5.25	2.00	5.79	2.00	6.32	ns						
t _{insupll}	3.221		3.38		-		ns						
t _{INHPLL}	0.00		0.00		-		ns						
t _{outcopll}	0.50	2.25	0.50	2.45	-	-	ns						

Г

Revision History

The information contained in the *APEX 20K Programmable Logic Device Family Data Sheet* version 5.1 supersedes information published in previous versions.

Version 5.1

APEX 20K Programmable Logic Device Family Data Sheet version 5.1 contains the following changes:

- In version 5.0, the VI input voltage spec was updated in Table 28 on page 63.
- In version 5.0, *Note* (5) to Tables 27 through 30 was revised.
- Added *Note* (2) to Figure 21 on page 33.

Version 5.0

APEX 20K Programmable Logic Device Family Data Sheet version 5.0 contains the following changes:

- Updated Tables 23 through 26. Removed 2.5-V operating condition tables because all APEX 20K devices are now 5.0-V tolerant.
- Updated conditions in Tables 33, 38 and 39.
- Updated data for t_{ESBDATAH} parameter.

Version 4.3

APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains the following changes:

- Updated Figure 20.
- Updated *Note* (2) to Table 13.
- Updated notes to Tables 27 through 30.

Version 4.2

APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains the following changes:

- Updated Figure 29.
- Updated *Note* (1) to Figure 29.

Version 4.1

APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes:

- *t*_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104.
- Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation