E·XFL

Intel - EP20K100ETC144-3 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	416
Number of Logic Elements/Cells	4160
Total RAM Bits	53248
Number of I/O	92
Number of Gates	263000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k100etc144-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

APEX[™] 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and productterm-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, registerintensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device.

APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices. Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure.

Carry Chain

The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higherorder bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB[™] structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure.

Figure 6 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures.

The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode

Notes to Figure 21:

All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)APEX 20KE devices have four dedicated clocks. (2)

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Altera Corporation

Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software.

Table 10. APEX 20K Programmable Delay Chains				
Programmable Delays Quartus II Logic Option				
Input pin to core delay	Decrease input delay to internal cells			
Input pin to input register delay	Decrease input delay to input register			
Core to output register delay	Decrease input delay to output register			
Output register t_{CO} delay	Increase delay to output pin			

The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices.

The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Figure 28 shows how a column IOE connects to the interconnect.

Figure 28. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed. APEX 20KE devices also support the MultiVolt I/O interface feature. The APEX 20KE VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels are sometime with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KE device is 5.0-V tolerant with the addition of a resistor.

Table 13 summarizes APEX 20KE MultiVolt I/O support.

Table 13. /	Table 13. APEX 20KE MultiVolt I/O Support Note (1)							
V _{CCIO} (V)	CIO (V) Input Signals (V)				Output Signals (V)			
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0
1.8	\checkmark	\checkmark	\checkmark		\checkmark			
2.5	\checkmark	\checkmark	>			\checkmark		
3.3	\checkmark	\checkmark	\checkmark	(2)			✓(3)	

Notes to Table 13:

 The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.

(2) An APEX 20KE device can be made 5.0-V tolerant with the addition of an external resistor. You also need a PCI clamp and series resistor.

(3) When V_{CCIO} = 3.3 V, an APEX 20KE device can drive a 2.5-V device with 3.3-V tolerant inputs.

ClockLock & ClockBoost Features

APEX 20K devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20K devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20K device's high-speed clock to provide significant improvements in system performance and band-width. Devices with an X-suffix on the ordering code include the ClockLock circuit.

The ClockLock and ClockBoost features in APEX 20K devices are enabled through the Quartus II software. External devices are not required to use these features.

Table 18. A	Table 18. APEX 20KE Clock Input & Output Parameters (Part 1 of 2) Note (1)						
Symbol	Parameter	I/O Standard -1X Speed Grade		-1X Speed Grade -2X S		l Grade	Units
			Min	Max	Min	Max	
f _{VCO} (4)	Voltage controlled oscillator operating range		200	500	200	500	MHz
f _{CLOCK0}	Clock0 PLL output frequency for internal use		1.5	335	1.5	200	MHz
f _{CLOCK1}	Clock1 PLL output frequency for internal use		20	335	20	200	MHz
f _{CLOCK0_EXT}	Output clock frequency for	3.3-V LVTTL	1.5	245	1.5	226	MHz
	external clock0 output	2.5-V LVTTL	1.5	234	1.5	221	MHz
		1.8-V LVTTL	1.5	223	1.5	216	MHz
		GTL+	1.5	205	1.5	193	MHz
		SSTL-2 Class I	1.5	158	1.5	157	MHz
		SSTL-2 Class II	1.5	142	1.5	142	MHz
		SSTL-3 Class I	1.5	166	1.5	162	MHz
		SSTL-3 Class II	1.5	149	1.5	146	MHz
		LVDS	1.5	420	1.5	350	MHz
f _{CLOCK1_EXT}	Output clock frequency for	3.3-V LVTTL	20	245	20	226	MHz
	external clock1 output	2.5-V LVTTL	20	234	20	221	MHz
		1.8-V LVTTL	20	223	20	216	MHz
		GTL+	20	205	20	193	MHz
		SSTL-2 Class I	20	158	20	157	MHz
		SSTL-2 Class II	20	142	20	142	MHz
		SSTL-3 Class I	20	166	20	162	MHz
		SSTL-3 Class II	20	149	20	146	MHz
		LVDS	20	420	20	350	MHz

Table 18. /	able 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1)						
Symbol	Parameter	I/O Standard	-1X Spe	-1X Speed Grade -2X Sp		-2X Speed Grade	
			Min	Max	Min	Max	
f _{IN}	Input clock frequency	3.3-V LVTTL	1.5	290	1.5	257	MHz
		2.5-V LVTTL	1.5	281	1.5	250	MHz
		1.8-V LVTTL	1.5	272	1.5	243	MHz
		GTL+	1.5	303	1.5	261	MHz
		SSTL-2 Class I	1.5	291	1.5	253	MHz
		SSTL-2 Class II	1.5	291	1.5	253	MHz
		SSTL-3 Class I	1.5	300	1.5	260	MHz
		SSTL-3 Class II	1.5	300	1.5	260	MHz
		LVDS	1.5	420	1.5	350	MHz

Notes to Tables 17 and 18:

 All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.

- (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK_ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz ð f_{VCO} ð 840 MHz for LVDS mode.

SignalTap Embedded Logic Analyzer

APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured. The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices.

Table 20. APEX 20K Boundary-Scan Register Length				
Device	Boundary-Scan Register Length			
EP20K30E	420			
EP20K60E	624			
EP20K100	786			
EP20K100E	774			
EP20K160E	984			
EP20K200	1,176			
EP20K200E	1,164			
EP20K300E	1,266			
EP20K400	1,536			
EP20K400E	1,506			
EP20K600E	1,806			
EP20K1000E	2,190			
EP20K1500E	1 (1)			

Note to Table 20:

(1) This device does not support JTAG boundary scan testing.

Table 2	Table 26. APEX 20K 5.0-V Tolerant Device Capacitance Notes (2), (14)					
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF	
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF	

Notes to Tables 23 through 26:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- All APEX 20K devices are 5.0-V tolerant. (2)
- (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- Numbers in parentheses are for industrial-temperature-range devices. (4)
- Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. (5)
- All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are (6) powered.
- (7)Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ or 3.3 V.
- These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on (8)page 62.
- (9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 33 on page 68.
- (10) The I_{OH} parameter refers to high-level TTL, PCI or CMOS output current.
- (11) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (12) This value is specified for normal device operation. The value may vary during power-up.
- (13) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO} .
- (14) Capacitance is sample-tested only.

Tables 27 through 30 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KE devices.

Table 2	Table 27. APEX 20KE Device Absolute Maximum Ratings Note (1)						
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	2.5	V		
V _{CCIO}			-0.5	4.6	V		
VI	DC input voltage		-0.5	4.6	V		
I _{OUT}	DC output current, per pin		-25	25	mA		
T _{STG}	Storage temperature	No bias	-65	150	°C		
T _{AMB}	Ambient temperature	Under bias	-65	135	°C		
Τ _J	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C		
		Ceramic PGA packages, under bias		150	°C		

Table 28. APEX 20KE Device Recommended Operating Conditions						
Symbol	Parameter	Conditions	Min	Max	Unit	
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	1.71 (1.71)	1.89 (1.89)	V	
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V	
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V	
	Supply voltage for output buffers, 1.8-V operation	(3), (4)	1.71 (1.71)	1.89 (1.89)	V	
VI	Input voltage	(5), (6)	-0.5	4.0	V	
Vo	Output voltage		0	V _{CCIO}	V	
TJ	Junction temperature	For commercial use	0	85	°C	
		For industrial use	-40	100	°C	
t _R	Input rise time			40	ns	
t _F	Input fall time			40	ns	

Figure 35 shows the output drive characteristics of APEX 20KE devices.

Note to Figure 35:(1) These are transient (AC) currents.

Timing Model

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Table 31. APEX 2	OK f _{MAX} Timing Parameters (Part 2 of 2)
Symbol	Parameter
t _{ESBDATACO2}	ESB clock-to-output delay without output registers
t _{ESBDD}	ESB data-in to data-out delay for RAM mode
t _{PD}	ESB macrocell input to non-registered output
t _{PTERMSU}	ESB macrocell register setup time before clock
t _{PTERMCO}	ESB macrocell register clock-to-output delay
t _{F1-4}	Fanout delay using local interconnect
t _{F5-20}	Fanout delay using MegaLab Interconnect
t _{F20+}	Fanout delay using FastTrack Interconnect
t _{CH}	Minimum clock high time from clock pin
t _{CL}	Minimum clock low time from clock pin
t _{CLRP}	LE clear pulse width
t _{PREP}	LE preset pulse width
t _{ESBCH}	Clock high time
t _{ESBCL}	Clock low time
t _{ESBWP}	Write pulse width
t _{ESBRP}	Read pulse width

Tables 32 and 33 describe APEX 20K external timing parameters.

Table 32. APEX 20K External Timing Parameters Note (1)				
Symbol	Clock Parameter			
t _{INSU}	Setup time with global clock at IOE register			
t _{INH}	Hold time with global clock at IOE register			
t _{оитсо}	lock-to-output delay with global clock at IOE register			

Table 33. APEX 20K External Bidirectional Timing Parameters Note (1)					
Symbol	Parameter	Conditions			
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at same-row or same- column LE register				
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same-column LE register				
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 10 pF			
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 10 pF			
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate = off	C1 = 10 pF			

Table 36. APEX 20KE Routing Timing Microparameters Note (1)							
Symbol	Parameter						
t _{F1-4}	Fanout delay using Local Interconnect						
t _{F5-20}	Fanout delay estimate using MegaLab Interconnect						
t _{F20+}	Fanout delay estimate using FastTrack Interconnect						

Note to Table 36:

 These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

TAULE ST. APEX ZUKE FUNCTIONAL TIMING MICROPARAMETERS							
Symbol	Parameter						
ТСН	Minimum clock high time from clock pin						
TCL	Minimum clock low time from clock pin						
TCLRP	LE clear Pulse Width						
TPREP	LE preset pulse width						
TESBCH	Clock high time for ESB						
TESBCL	Clock low time for ESB						
TESBWP	Write pulse width						
TESBRP	Read pulse width						

Table 37. APEX 20KE Functional Timing Microparameters

Tables 38 and 39 describe the APEX 20KE external timing parameters.

Table 38. APEX 20KE External Timing Parameters Note (1)								
Symbol	Clock Parameter Condi							
t _{INSU}	Setup time with global clock at IOE input register							
t _{INH}	Hold time with global clock at IOE input register							
t _{оитсо}	Clock-to-output delay with global clock at IOE output register	C1 = 10 pF						
t _{INSUPLL}	Setup time with PLL clock at IOE input register							
t _{INHPLL}	Hold time with PLL clock at IOE input register							
t _{OUTCOPLL}	Clock-to-output delay with PLL clock at IOE output register	C1 = 10 pF						

Tables 40 through 42 show the f_{MAX} timing parameters for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Symbol	-1 Sneed Grade		-2 Snee	d Grade	-3 Sner	Units	
oymbol			2 0000		0 0000		
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.5		0.6		0.8		ns
t _H	0.7		0.8		1.0		ns
t _{CO}		0.3		0.4		0.5	ns
t _{LUT}		0.8		1.0		1.3	ns
t _{ESBRC}		1.7		2.1		2.4	ns
t _{ESBWC}		5.7		6.9		8.1	ns
t _{ESBWESU}	3.3		3.9		4.6		ns
t _{ESBDATASU}	2.2		2.7		3.1		ns
t _{ESBDATAH}	0.6		0.8		0.9		ns
t _{ESBADDRSU}	2.4		2.9		3.3		ns
t _{ESBDATACO1}		1.3		1.6		1.8	ns
t _{ESBDATACO2}		2.6		3.1		3.6	ns
t _{ESBDD}		2.5		3.3		3.6	ns
t _{PD}		2.5		3.0		3.6	ns
t _{PTERMSU}	2.3		2.6		3.2		ns
t _{PTERMCO}		1.5		1.8		2.1	ns
t _{F1-4}		0.5		0.6		0.7	ns
t _{F5-20}		1.6		1.7		1.8	ns
t _{F20+}		2.2		2.2		2.3	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns
t _{CLRP}	0.3		0.4		0.4		ns
t _{PREP}	0.5		0.5		0.5		ns
t _{ESBCH}	2.0		2.5		3.0		ns
t _{ESBCL}	2.0		2.5		3.0		ns
t _{ESBWP}	1.6		1.9		2.2		ns
t _{ESBRP}	1.0		1.3		1.4		ns

Symbol	-1 Spee	ed Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Units	
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.1		0.3		0.6		ns	
t _H	0.5		0.8		0.9		ns	
t _{CO}		0.1		0.4		0.6	ns	
t _{LUT}		1.0		1.2		1.4	ns	
t _{ESBRC}		1.7		2.1		2.4	ns	
t _{ESBWC}		5.7		6.9		8.1	ns	
t _{ESBWESU}	3.3		3.9		4.6		ns	
t _{ESBDATASU}	2.2		2.7		3.1		ns	
t _{ESBDATAH}	0.6		0.8		0.9		ns	
t _{ESBADDRSU}	2.4		2.9		3.3		ns	
t _{ESBDATACO1}		1.3		1.6		1.8	ns	
t _{ESBDATACO2}		2.5		3.1		3.6	ns	
t _{ESBDD}		2.5		3.3		3.6	ns	
t _{PD}		2.5		3.1		3.6	ns	
t _{PTERMSU}	1.7		2.1		2.4		ns	
t _{PTERMCO}		1.0		1.2		1.4	ns	
t _{F1-4}		0.4		0.5		0.6	ns	
t _{F5-20}		2.6		2.8		2.9	ns	
t _{F20+}		3.7		3.8		3.9	ns	
t _{CH}	2.0		2.5		3.0		ns	
t _{CL}	2.0		2.5		3.0		ns	
t _{CLRP}	0.5		0.6		0.8		ns	
t _{PREP}	0.5		0.5		0.5		ns	
t _{ESBCH}	2.0		2.5		3.0		ns	
t _{ESBCL}	2.0		2.5		3.0		ns	
t _{ESBWP}	1.5		1.9		2.2		ns	
t _{ESBRP}	1.0		1.2		1.4		ns	

Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Table 72. EP20K160E External Bidirectional Timing Parameters										
Symbol	-	·1	-:	2	-	Unit				
	Min	Max	Min	Max	Min	Max				
t _{insubidir}	2.86		3.24		3.54		ns			
t _{inhbidir}	0.00		0.00		0.00		ns			
t _{outcobidir}	2.00	5.07	2.00	5.59	2.00	6.13	ns			
t _{XZBIDIR}		7.43		8.23		8.58	ns			
t _{ZXBIDIR}		7.43		8.23		8.58	ns			
t _{insubidirpll}	4.93		5.48		-		ns			
t _{inhbidirpll}	0.00		0.00		-		ns			
toutcobidirpll	0.50	3.00	0.50	3.35	-	-	ns			
t _{XZBIDIRPLL}		5.36		5.99		-	ns			
t _{ZXBIDIRPLL}		5.36		5.99		-	ns			

Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 73. EP20K200E f _{MAX} LE Timing Microparameters											
Symbol	-1		-2		-	Unit					
	Min	Max	Min	Max	Min	Max					
t _{SU}	0.23		0.24		0.26		ns				
t _H	0.23		0.24		0.26		ns				
t _{CO}		0.26		0.31		0.36	ns				
t _{LUT}		0.70		0.90		1.14	ns				

Altera Corporation

APEX 20K Programmable Logic Device Family Data Sheet

Table 87. EP20K400E f _{MAX} Routing Delays											
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade					
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.25		0.25		0.26	ns				
t _{F5-20}		1.01		1.12		1.25	ns				
t _{F20+}		3.71		3.92		4.17	ns				

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.36		2.22		2.35		ns	
t _{CL}	1.36		2.26		2.35		ns	
t _{CLRP}	0.18		0.18		0.19		ns	
t _{PREP}	0.18		0.18		0.19		ns	
t _{ESBCH}	1.36		2.26		2.35		ns	
t _{ESBCL}	1.36		2.26		2.35		ns	
t _{ESBWP}	1.17		1.38		1.56		ns	
t _{ESBRP}	0.94		1.09		1.25		ns	

Table 89. EP20K400E External Timing Parameters											
Symbol	-1 Speed Grade		-2 Spee	ed Grade	-3 Spee	-3 Speed Grade					
	Min	Max	Min	Max	Min	Max					
t _{INSU}	2.51		2.64		2.77		ns				
t _{INH}	0.00		0.00		0.00		ns				
t _{outco}	2.00	5.25	2.00	5.79	2.00	6.32	ns				
t _{insupll}	3.221		3.38		-		ns				
t _{INHPLL}	0.00		0.00		-		ns				
t _{outcopll}	0.50	2.25	0.50	2.45	-	-	ns				

Г

Table 98. EP20K1000E f _{MAX} ESB Timing Microparameters									
Symbol	-1 Spee	ed Grade	-2 Spe	ed Grade	-3 Spee	Unit			
	Min	Max	Min	Max	Min	Max			
t _{ESBARC}		1.78		2.02		1.95	ns		
t _{ESBSRC}		2.52		2.91		3.14	ns		
t _{ESBAWC}		3.52		4.11		4.40	ns		
t _{ESBSWC}		3.23		3.84		4.16	ns		
t _{ESBWASU}	0.62		0.67		0.61		ns		
t _{ESBWAH}	0.41		0.55		0.55		ns		
t _{ESBWDSU}	0.77		0.79		0.81		ns		
t _{ESBWDH}	0.41		0.55		0.55		ns		
t _{ESBRASU}	1.74		1.92		1.85		ns		
t _{ESBRAH}	0.00		0.01		0.23		ns		
t _{ESBWESU}	2.07		2.28		2.41		ns		
t _{ESBWEH}	0.00		0.00		0.00		ns		
t _{ESBDATASU}	0.25		0.27		0.29		ns		
t _{ESBDATAH}	0.13		0.13		0.13		ns		
t _{ESBWADDRSU}	0.11		0.04		0.11		ns		
t _{ESBRADDRSU}	0.14		0.11		0.16		ns		
t _{ESBDATACO1}		1.29		1.50		1.63	ns		
t _{ESBDATACO2}		2.55		2.99		3.22	ns		
t _{ESBDD}		3.12		3.57		3.85	ns		
t _{PD}		1.84		2.13		2.32	ns		
t _{PTERMSU}	1.08		1.19		1.32		ns		
t _{PTERMCO}		1.31		1.53		1.66	ns		

Г

٦