Welcome to **E-XFL.COM** ### Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 416 | | Number of Logic Elements/Cells | 4160 | | Total RAM Bits | 53248 | | Number of I/O | 93 | | Number of Gates | 263000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 144-LQFP | | Supplier Device Package | 144-TQFP (20x20) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k100fc144-1 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # Functional Description APEX 20K devices incorporate LUT-based logic, product-term-based logic, and memory into one device. Signal interconnections within APEX 20K devices (as well as to and from device pins) are provided by the FastTrack[®] Interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device. Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KE devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards. The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs ensures that the APEX 20K device can implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. The abundance of ESBs ensures that designers can create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20K device. Altera Corporation 9 #### Cascade Chain With the cascade chain, the APEX 20K architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. Figure 7. APEX 20K Cascade Chain Figure 18. Deep Memory Block Implemented with Multiple ESBs The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19. Figure 19. APEX 20K ESB Implementing Dual-Port RAM #### Read/Write Clock Mode The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode. Figure 20. ESB in Read/Write Clock Mode Note (1) Notes to Figure 20: (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (2) APEX 20KE devices have four dedicated clocks. Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software. | Table 10. APEX 20K Programmable Delay Chains | | | | | | |----------------------------------------------|-----------------------------------------|--|--|--|--| | Programmable Delays Quartus II Logic Option | | | | | | | Input pin to core delay | Decrease input delay to internal cells | | | | | | Input pin to input register delay | Decrease input delay to input register | | | | | | Core to output register delay | Decrease input delay to output register | | | | | | Output register t _{CO} delay | Increase delay to output pin | | | | | The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices. The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time. Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software. | Table 11. APEX 20KE Programmable Delay Chains | | | | | | |-----------------------------------------------|-----------------------------------------|--|--|--|--| | Programmable Delays | Quartus II Logic Option | | | | | | Input Pin to Core Delay | Decrease input delay to internal cells | | | | | | Input Pin to Input Register Delay | Decrease input delay to input registers | | | | | | Core to Output Register Delay | Decrease input delay to output register | | | | | | Output Register t _{CO} Delay | Increase delay to output pin | | | | | | Clock Enable Delay | Increase clock enable delay | | | | | The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices. | Table 20. APEX 20K Boundary-Scan Register Length | | | | | | |--------------------------------------------------|-------------------------------|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | EP20K30E | 420 | | | | | | EP20K60E | 624 | | | | | | EP20K100 | 786 | | | | | | EP20K100E | 774 | | | | | | EP20K160E | 984 | | | | | | EP20K200 | 1,176 | | | | | | EP20K200E | 1,164 | | | | | | EP20K300E | 1,266 | | | | | | EP20K400 | 1,536 | | | | | | EP20K400E | 1,506 | | | | | | EP20K600E | 1,806 | | | | | | EP20K1000E | 2,190 | | | | | | EP20K1500E | 1 (1) | | | | | #### Note to Table 20: (1) This device does not support JTAG boundary scan testing. Figure 32. APEX 20K AC Test Conditions Note (1) #### Note to Figure 32: (1) Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. ## Operating Conditions Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices. | Table 2 | Table 23. APEX 20K 5.0-V Tolerant Device Absolute Maximum Ratings Notes (1), (2) | | | | | | | | | |--------------------|----------------------------------------------------------------------------------|------------------------------------------------|------|------|------|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | V _{CCINT} | Supply voltage | With respect to ground (3) | -0.5 | 3.6 | V | | | | | | V _{CCIO} | | | -0.5 | 4.6 | V | | | | | | V _I | DC input voltage | | -2.0 | 5.75 | V | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | | TJ | Junction temperature | PQFP, RQFP, TQFP, and BGA packages, under bias | | 135 | ° C | | | | | | | | Ceramic PGA packages, under bias | | 150 | °C | | | | | | Table 2 | Table 26. APEX 20K 5.0-V Tolerant Device Capacitance Notes (2), (14) | | | | | | | |--------------------|----------------------------------------------------------------------|-------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | #### Notes to Tables 23 through 26: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) All APEX 20K devices are 5.0-V tolerant. - (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (4) Numbers in parentheses are for industrial-temperature-range devices. - (5) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (6) All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (7) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ or 3.3 V. - (8) These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on page 62. - (9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 33 on page 68. - (10) The I_{OH} parameter refers to high-level TTL, PCI or CMOS output current. - (11) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (12) This value is specified for normal device operation. The value may vary during power-up. - (13) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO} . - (14) Capacitance is sample-tested only. Tables 27 through 30 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KE devices. | Table 27. APEX 20KE Device Absolute Maximum Ratings Note (1) | | | | | | | | | |--------------------------------------------------------------|----------------------------|------------------------------------------------|------|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | V _{CCINT} | Supply voltage | With respect to ground (2) | -0.5 | 2.5 | V | | | | | V_{CCIO} | | | -0.5 | 4.6 | ٧ | | | | | V _I | DC input voltage | | -0.5 | 4.6 | V | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | TJ | Junction temperature | PQFP, RQFP, TQFP, and BGA packages, under bias | | 135 | ° C | | | | | | | Ceramic PGA packages, under bias | | 150 | ° C | | | | 8 4 2 0.5 Figure 35 shows the output drive characteristics of APEX 20KE devices. Note to Figure 35: (1) These are transient (AC) currents. ### **Timing Model** The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance. Vo Output Voltage (V) IOH 2.0 | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | d Grade | Unit | |-----------------------------|----------------|-----|---------|----------------|-----|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.1 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCOBIDIR} (2) | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 47. EP20K400 External Timing Parameters | | | | | | | | | | |-----------------------------------------------|----------------|-----|---------|----------------|-----|----------------|----|--|--| | Symbol | -1 Speed Grade | | -2 Spec | -2 Speed Grade | | -3 Speed Grade | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSU} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{OUTCO} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | | | t _{INSU} (2) | 0.4 | | 1.0 | | - | | ns | | | | t _{INH} (2) | 0.0 | | 0.0 | | _ | | ns | | | | t _{OUTCO} (2) | 0.5 | 3.1 | 0.5 | 4.1 | _ | _ | ns | | | | Table 48. EP20K400 External Bidirections | I Timina | Parameters 1 4 1 | |------------------------------------------|----------|------------------| |------------------------------------------|----------|------------------| | Symbol | -1 Speed Grade | | -1 Speed Grade -2 Speed Grade | | -2 Spee | ed Grade | -3 Speed Grade | | Unit | |-----------------------------|----------------|-----|-------------------------------|-----|---------|----------|----------------|--|------| | | Min | Max | Min | Max | Min | Max | | | | | t _{INSUBIDIR} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{OUTCOBIDIR} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | | | t _{XZBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | | | t _{ZXBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | | | t _{INSUBIDIR} (2) | 0.5 | | 1.0 | | - | | ns | | | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | | | toutcobidir (2) | 0.5 | 3.1 | 0.5 | 4.1 | - | - | ns | | | | t _{XZBIDIR} (2) | | 6.2 | | 7.6 | | - | ns | | | | t _{ZXBIDIR} (2) | | 6.2 | | 7.6 | | _ | ns | | | | Symbol | -1 | | | -2 | -; | 3 | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.83 | | 2.57 | | 3.79 | ns | | t _{ESBSRC} | | 2.46 | | 3.26 | | 4.61 | ns | | t _{ESBAWC} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{ESBSWC} | | 3.77 | | 4.90 | | 6.79 | ns | | t _{ESBWASU} | 1.59 | | 2.23 | | 3.29 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.75 | | 2.46 | | 3.62 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.76 | | 2.47 | | 3.64 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.68 | | 2.49 | | 3.87 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.08 | | 0.43 | | 1.04 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.29 | | 0.72 | | 1.46 | | ns | | t _{ESBRADDRSU} | 0.36 | | 0.81 | | 1.58 | | ns | | t _{ESBDATACO1} | | 1.06 | | 1.24 | | 1.55 | ns | | t _{ESBDATACO2} | | 2.39 | | 3.35 | | 4.94 | ns | | t _{ESBDD} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{PD} | | 1.72 | | 2.41 | | 3.56 | ns | | t _{PTERMSU} | 0.99 | | 1.56 | | 2.55 | | ns | | t _{PTERMCO} | | 1.07 | | 1.26 | | 1.08 | ns | | Table 62. EP20K | I GOL IMAX LOL | , Thinny Miles | 1 | | Ī | | 1 | |-------------------------|----------------|----------------|-------|------|-------|------|------| | Symbol | - | 1 | | -2 | -: | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.61 | | 1.84 | | 1.97 | ns | | t _{ESBSRC} | | 2.57 | | 2.97 | | 3.20 | ns | | t _{ESBAWC} | | 0.52 | | 4.09 | | 4.39 | ns | | t _{ESBSWC} | | 3.17 | | 3.78 | | 4.09 | ns | | t _{ESBWASU} | 0.56 | | 6.41 | | 0.63 | | ns | | t _{ESBWAH} | 0.48 | | 0.54 | | 0.55 | | ns | | t _{ESBWDSU} | 0.71 | | 0.80 | | 0.81 | | ns | | t _{ESBWDH} | .048 | | 0.54 | | 0.55 | | ns | | t _{ESBRASU} | 1.57 | | 1.75 | | 1.87 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.20 | | ns | | t _{ESBWESU} | 1.54 | | 1.72 | | 1.80 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.16 | | -0.20 | | -0.20 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.12 | | 0.08 | | 0.13 | | ns | | t _{ESBRADDRSU} | 0.17 | | 0.15 | | 0.19 | | ns | | t _{ESBDATACO1} | | 1.20 | | 1.39 | | 1.52 | ns | | t _{ESBDATACO2} | | 2.54 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.06 | | 3.56 | | 3.85 | ns | | t _{PD} | | 1.73 | | 2.02 | | 2.20 | ns | | t _{PTERMSU} | 1.11 | | 1.26 | | 1.38 | | ns | | t _{PTERMCO} | | 1.19 | | 1.40 | | 1.08 | ns | | Table 63. EP2 | 0K100E f _{MAX} 1 | Routing Delays | s | | | | | |--------------------|---------------------------|----------------|-----|------|-----|------|------| | Symbol | - | -1 | | -2 | | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{F1-4} | | 0.24 | | 0.27 | | 0.29 | ns | | t _{F5-20} | | 1.04 | | 1.26 | | 1.52 | ns | | t _{F20+} | | 1.12 | | 1.36 | | 1.86 | ns | Tables 67 through 72 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K160E APEX 20KE devices. | Table 67. EP20K160E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |----------------------------------------------------------------|------|------|------|------|------|------|------|--|--|--| | Symbol | -1 | | | -2 | | 3 | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{SU} | 0.22 | | 0.24 | | 0.26 | | ns | | | | | t _H | 0.22 | | 0.24 | | 0.26 | | ns | | | | | t _{CO} | | 0.25 | | 0.31 | | 0.35 | ns | | | | | t _{LUT} | | 0.69 | | 0.88 | | 1.12 | ns | | | | | Symbol | - | 1 | - | 2 | -; | 3 | Unit | |-------------------------|-------|------|-------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.65 | | 2.02 | | 2.11 | ns | | t _{ESBSRC} | | 2.21 | | 2.70 | | 3.11 | ns | | t _{ESBAWC} | | 3.04 | | 3.79 | | 4.42 | ns | | t _{ESBSWC} | | 2.81 | | 3.56 | | 4.10 | ns | | t _{ESBWASU} | 0.54 | | 0.66 | | 0.73 | | ns | | t _{ESBWAH} | 0.36 | | 0.45 | | 0.47 | | ns | | t _{ESBWDSU} | 0.68 | | 0.81 | | 0.94 | | ns | | t _{ESBWDH} | 0.36 | | 0.45 | | 0.47 | | ns | | t _{ESBRASU} | 1.58 | | 1.87 | | 2.06 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.01 | | ns | | t _{ESBWESU} | 1.41 | | 1.71 | | 2.00 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.02 | | -0.03 | | 0.09 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.14 | | 0.17 | | 0.35 | | ns | | t _{ESBRADDRSU} | 0.21 | | 0.27 | | 0.43 | | ns | | t _{ESBDATACO1} | | 1.04 | | 1.30 | | 1.46 | ns | | t _{ESBDATACO2} | | 2.15 | | 2.70 | | 3.16 | ns | | t _{ESBDD} | | 2.69 | | 3.35 | | 3.97 | ns | | t _{PD} | | 1.55 | | 1.93 | _ | 2.29 | ns | | t _{PTERMSU} | 1.01 | | 1.23 | | 1.52 | | ns | | t _{PTERMCO} | | 1.06 | | 1.32 | | 1.04 | ns | Tables 85 through 90 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K400E APEX 20KE devices. | Table 85. EP20K400E f _{MAX} LE Timing Microparameters | | | | | | | | | | |----------------------------------------------------------------|---------|---------|---------|----------|---------|---------|------|--|--| | Symbol | -1 Spee | d Grade | -2 Spec | ed Grade | -3 Spee | d Grade | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{SU} | 0.23 | | 0.23 | | 0.23 | | ns | | | | t _H | 0.23 | | 0.23 | | 0.23 | | ns | | | | t _{CO} | | 0.25 | | 0.29 | | 0.32 | ns | | | | t _{LUT} | | 0.70 | | 0.83 | | 1.01 | ns | | | | Symbol | -1 Spee | d Grade | -2 Spe | ed Grade | -3 Spee | d Grade | Unit | |-------------------------|---------|---------|--------|----------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.78 | | 2.02 | | 1.95 | ns | | t _{ESBSRC} | | 2.52 | | 2.91 | | 3.14 | ns | | t _{ESBAWC} | | 3.52 | | 4.11 | | 4.40 | ns | | t _{ESBSWC} | | 3.23 | | 3.84 | | 4.16 | ns | | t _{ESBWASU} | 0.62 | | 0.67 | | 0.61 | | ns | | t _{ESBWAH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBWDSU} | 0.77 | | 0.79 | | 0.81 | | ns | | t _{ESBWDH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBRASU} | 1.74 | | 1.92 | | 1.85 | | ns | | t _{ESBRAH} | 0.00 | | 0.01 | | 0.23 | | ns | | t _{ESBWESU} | 2.07 | | 2.28 | | 2.41 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.25 | | 0.27 | | 0.29 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.11 | | 0.04 | | 0.11 | | ns | | t _{ESBRADDRSU} | 0.14 | | 0.11 | | 0.16 | | ns | | t _{ESBDATACO1} | | 1.29 | | 1.50 | | 1.63 | ns | | t _{ESBDATACO2} | | 2.55 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.12 | | 3.57 | | 3.85 | ns | | t _{PD} | | 1.84 | | 2.13 | | 2.32 | ns | | t _{PTERMSU} | 1.08 | | 1.19 | | 1.32 | | ns | 1.53 1.66 ns 1.31 t_{PTERMCO} | Table 99. EP2 | OK1000E f _{MAX} | Routing Dela | ys | | | | | |--------------------|--------------------------|--------------|---------|----------|---------|----------|------| | Symbol | -1 Spee | d Grade | -2 Spec | ed Grade | -3 Spee | ed Grade | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{F1-4} | | 0.27 | | 0.27 | | 0.27 | ns | | t _{F5-20} | | 1.45 | | 1.63 | | 1.75 | ns | | t _{F20+} | | 4.15 | | 4.33 | | 4.97 | ns | | · - | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | | |--------------------|----------------|-----|---------|----------------|------|----------------|----|--| | | Min | Max | Min | Max | Min | Max | | | | t _{CH} | 1.25 | | 1.43 | | 1.67 | | ns | | | t _{CL} | 1.25 | | 1.43 | | 1.67 | | ns | | | t _{CLRP} | 0.20 | | 0.20 | | 0.20 | | ns | | | t _{PREP} | 0.20 | | 0.20 | | 0.20 | | ns | | | t _{ESBCH} | 1.25 | | 1.43 | | 1.67 | | ns | | | t _{ESBCL} | 1.25 | | 1.43 | | 1.67 | | ns | | | t _{ESBWP} | 1.28 | | 1.51 | | 1.65 | | ns | | | t _{ESBRP} | 1.11 | | 1.29 | | 1.41 | | ns | | | Symbol | -1 Spee | d Grade | -2 Spee | d Grade | -3 Speed Grade | | Unit | |----------------------|---------|---------|---------|---------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.70 | | 2.84 | | 2.97 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.75 | 2.00 | 6.33 | 2.00 | 6.90 | ns | | t _{INSUPLL} | 1.64 | | 2.09 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | toutcople | 0.50 | 2.25 | 0.50 | 2.99 | - | - | ns | | Symbol | -1 Spee | d Grade | -2 Spec | ed Grade | -3 Spee | d Grade | Unit | |-------------------------|---------|---------|---------|----------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.78 | | 2.02 | | 1.95 | ns | | t _{ESBSRC} | | 2.52 | | 2.91 | | 3.14 | ns | | t _{ESBAWC} | | 3.52 | | 4.11 | | 4.40 | ns | | t _{ESBSWC} | | 3.23 | | 3.84 | | 4.16 | ns | | t _{ESBWASU} | 0.62 | | 0.67 | | 0.61 | | ns | | t _{ESBWAH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBWDSU} | 0.77 | | 0.79 | | 0.81 | | ns | | t _{ESBWDH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBRASU} | 1.74 | | 1.92 | | 1.85 | | ns | | t _{ESBRAH} | 0.00 | | 0.01 | | 0.23 | | ns | | t _{ESBWESU} | 2.07 | | 2.28 | | 2.41 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.25 | | 0.27 | | 0.29 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.11 | | 0.04 | | 0.11 | | ns | | t _{ESBRADDRSU} | 0.14 | | 0.11 | | 0.16 | | ns | | t _{ESBDATACO1} | | 1.29 | | 1.50 | | 1.63 | ns | | t _{ESBDATACO2} | | 2.55 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.12 | | 3.57 | | 3.85 | ns | | t _{PD} | | 1.84 | | 2.13 | | 2.32 | ns | | t _{PTERMSU} | 1.08 | | 1.19 | | 1.32 | _ | ns | | t _{PTERMCO} | | 1.31 | | 1.53 | | 1.66 | ns | | Table 105. EP20K1500E f _{MAX} Routing Delays | | | | | | | | | | | | |-------------------------------------------------------|---------|---------|--------|----------|---------|---------|------|--|--|--|--| | Symbol | -1 Spee | d Grade | -2 Spe | ed Grade | -3 Spee | d Grade | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | t _{F1-4} | | 0.28 | | 0.28 | | 0.28 | ns | | | | | | t _{F5-20} | | 1.36 | | 1.50 | | 1.62 | ns | | | | | | t _{F20+} | | 4.43 | | 4.48 | | 5.07 | ns | | | | | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |---------------------------|----------------|------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max |] | | t _{INSUBIDIR} | 3.47 | | 3.68 | | 3.99 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 6.18 | 2.00 | 6.81 | 2.00 | 7.36 | ns | | t _{XZBIDIR} | | 6.91 | | 7.62 | | 8.38 | ns | | t _{ZXBIDIR} | | 6.91 | | 7.62 | | 8.38 | ns | | t _{INSUBIDIRPLL} | 3.05 | | 3.26 | | | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | | | ns | | toutcobidirpll | 0.50 | 2.67 | 0.50 | 2.99 | | | ns | | t _{XZBIDIRPLL} | | 3.41 | | 3.80 | | | ns | | tzxbidirpll | | 3.41 | | 3.80 | | | ns | Tables 109 and 110 show selectable I/O standard input and output delays for APEX 20KE devices. If you select an I/O standard input or output delay other than LVCMOS, add or subtract the selected speed grade to or from the LVCMOS value. | Table 109. Selectable I/O Standard Input Delays | | | | | | | | |-------------------------------------------------|----------------|-------|----------------|-------|----------------|-------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | Min | | LVCMOS | | 0.00 | | 0.00 | | 0.00 | ns | | LVTTL | | 0.00 | | 0.00 | | 0.00 | ns | | 2.5 V | | 0.00 | | 0.04 | | 0.05 | ns | | 1.8 V | | -0.11 | | 0.03 | | 0.04 | ns | | PCI | | 0.01 | | 0.09 | | 0.10 | ns | | GTL+ | | -0.24 | | -0.23 | | -0.19 | ns | | SSTL-3 Class I | | -0.32 | | -0.21 | | -0.47 | ns | | SSTL-3 Class II | | -0.08 | | 0.03 | | -0.23 | ns | | SSTL-2 Class I | | -0.17 | | -0.06 | | -0.32 | ns | | SSTL-2 Class II | | -0.16 | | -0.05 | | -0.31 | ns | | LVDS | | -0.12 | | -0.12 | | -0.12 | ns | | CTT | | 0.00 | | 0.00 | | 0.00 | ns | | AGP | | 0.00 | | 0.00 | | 0.00 | ns |