Welcome to **E-XFL.COM** ### Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 416 | | Number of Logic Elements/Cells | 4160 | | Total RAM Bits | 53248 | | Number of I/O | 252 | | Number of Gates | 263000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 324-BGA | | Supplier Device Package | 324-FBGA (19x19) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k100fi324-2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## General Description APEXTM 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and product-term-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, register-intensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device. APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices. #### LE Operating Modes The APEX 20K LE can operate in one of the following three modes: - Normal mode - Arithmetic mode - Counter mode Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes. Figure 9. APEX 20K Interconnect Structure A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure. A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows. Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures. Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other. Row Interconnect MegaLAB Interconnect Column Interconnect Interconnect Figure 11. Driving the FastTrack Interconnect APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect. ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock. ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic. When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays. To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18. #### Read/Write Clock Mode The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode. Figure 20. ESB in Read/Write Clock Mode Note (1) Notes to Figure 20: (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (2) APEX 20KE devices have four dedicated clocks. Figure 22. ESB in Single-Port Mode Note (1) Notes to Figure 22: - (1) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset. - (2) APEX 20KE devices have four dedicated clocks. #### **Content-Addressable Memory** In APEX 20KE devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it. CAM is used for high-speed search operations. When searching for data within a RAM block, the search is performed serially. Thus, finding a particular data word can take many cycles. CAM searches all addresses in parallel and outputs the address storing a particular word. When a match is found, a match flag is set high. Figure 23 shows the CAM block diagram. APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time. Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software. | Table 11. APEX 20KE Programmable Delay Chains | | | | | | |-----------------------------------------------|-----------------------------------------|--|--|--|--| | Programmable Delays | Quartus II Logic Option | | | | | | Input Pin to Core Delay | Decrease input delay to internal cells | | | | | | Input Pin to Input Register Delay | Decrease input delay to input registers | | | | | | Core to Output Register Delay | Decrease input delay to output register | | | | | | Output Register t _{CO} Delay | Increase delay to output pin | | | | | | Clock Enable Delay | Increase clock enable delay | | | | | The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. Figure 26. APEX 20KE Bidirectional I/O Registers Notes (1), (2) Row, Column, FastRow, 4 Dedicated or Local Interconnect Clock Inputs Notes to Figure 26: - (1) This programmable delay has four settings: off and three levels of delay. - (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. #### Advanced I/O Standard Support APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II. For more information on I/O standards supported by APEX 20KE devices, see *Application Note 117 (Using Selectable I/O Standards in Altera Devices)*. The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support. Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs. When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks. APEX 20KE devices also support the MultiVolt I/O interface feature. The APEX 20KE VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KE device is 5.0-V tolerant with the addition of a resistor. Table 13 summarizes APEX 20KE MultiVolt I/O support. | Table 13. A | Table 13. APEX 20KE MultiVolt I/O Support Note (1) | | | | | | | | | | |-----------------------|----------------------------------------------------|-----------|-----------|-----|-----|----------|--------------|-----|--|--| | V _{CCIO} (V) | | Input Sig | ınals (V) | | | Output S | ignals (V) | | | | | | 1.8 | 2.5 | 3.3 | 5.0 | 1.8 | 2.5 | 3.3 | 5.0 | | | | 1.8 | ✓ | ✓ | ✓ | | ✓ | | | | | | | 2.5 | ✓ | ✓ | ✓ | | | ✓ | | | | | | 3.3 | ✓ | ✓ | \ | (2) | | | √ (3) | | | | #### Notes to Table 13: - The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case. - (2) An APEX 20KE device can be made 5.0-V tolerant with the addition of an external resistor. You also need a PCI clamp and series resistor. - (3) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20KE device can drive a 2.5-V device with 3.3-V tolerant inputs. # ClockLock & ClockBoost Features APEX 20K devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20K devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20K device's high-speed clock to provide significant improvements in system performance and band-width. Devices with an X-suffix on the ordering code include the ClockLock circuit. The ClockLock and ClockBoost features in APEX 20K devices are enabled through the Quartus II software. External devices are not required to use these features. The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices. | Table 20. APEX 20K Boundary-Scan Register Length | | | | | | |--------------------------------------------------|-------------------------------|--|--|--|--| | Device | Boundary-Scan Register Length | | | | | | EP20K30E | 420 | | | | | | EP20K60E | 624 | | | | | | EP20K100 | 786 | | | | | | EP20K100E | 774 | | | | | | EP20K160E | 984 | | | | | | EP20K200 | 1,176 | | | | | | EP20K200E | 1,164 | | | | | | EP20K300E | 1,266 | | | | | | EP20K400 | 1,536 | | | | | | EP20K400E | 1,506 | | | | | | EP20K600E | 1,806 | | | | | | EP20K1000E | 2,190 | | | | | | EP20K1500E | 1 (1) | | | | | #### Note to Table 20: (1) This device does not support JTAG boundary scan testing. Figure 37. APEX 20KE f_{MAX} Timing Model | Table 31. APEX 2 | Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2) | | | | | | |-------------------------|---------------------------------------------------------------------|--|--|--|--|--| | Symbol | Parameter | | | | | | | t _{ESBDATACO2} | ESB clock-to-output delay without output registers | | | | | | | t _{ESBDD} | ESB data-in to data-out delay for RAM mode | | | | | | | t _{PD} | ESB macrocell input to non-registered output | | | | | | | t _{PTERMSU} | ESB macrocell register setup time before clock | | | | | | | t _{PTERMCO} | ESB macrocell register clock-to-output delay | | | | | | | t _{F1-4} | Fanout delay using local interconnect | | | | | | | t _{F5-20} | Fanout delay using MegaLab Interconnect | | | | | | | t _{F20+} | Fanout delay using FastTrack Interconnect | | | | | | | t _{CH} | Minimum clock high time from clock pin | | | | | | | t _{CL} | Minimum clock low time from clock pin | | | | | | | t _{CLRP} | LE clear pulse width | | | | | | | t _{PREP} | LE preset pulse width | | | | | | | t _{ESBCH} | Clock high time | | | | | | | t _{ESBCL} | Clock low time | | | | | | | t _{ESBWP} | Write pulse width | | | | | | | t _{ESBRP} | Read pulse width | | | | | | Tables 32 and 33 describe APEX 20K external timing parameters. | Table 32. APEX 20K External Timing Parameters Note (1) | | | | | | |--------------------------------------------------------|---------------------------------------------------------|--|--|--|--| | Symbol | Clock Parameter | | | | | | t _{INSU} | Setup time with global clock at IOE register | | | | | | t _{INH} | Hold time with global clock at IOE register | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE register | | | | | | Table 33. APEX 20K External Bidirectional Timing Parameters Note (1) | | | | | | | | |----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|--|--|--|--|--| | Symbol | Symbol Parameter | | | | | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 10 pF | | | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | C1 = 10 pF | | | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | C1 = 10 pF | | | | | | Tables 67 through 72 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K160E APEX 20KE devices. | Table 67. EP20K160E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |----------------------------------------------------------------|------|------|------|------|------|------|------|--|--|--| | Symbol | - | 1 | -2 | | -3 | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{SU} | 0.22 | | 0.24 | | 0.26 | | ns | | | | | t _H | 0.22 | | 0.24 | | 0.26 | | ns | | | | | t _{CO} | | 0.25 | | 0.31 | | 0.35 | ns | | | | | t _{LUT} | | 0.69 | | 0.88 | | 1.12 | ns | | | | | Table 69. EP20K160E f _{MAX} Routing Delays | | | | | | | | | | | |-----------------------------------------------------|-----|------|-----|------|-----|------|------|--|--|--| | Symbol | - | 1 | -2 | | -3 | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.25 | | 0.26 | | 0.28 | ns | | | | | t _{F5-20} | | 1.00 | | 1.18 | | 1.35 | ns | | | | | t _{F20+} | | 1.95 | | 2.19 | | 2.30 | ns | | | | | Symbol | -1 | | -2 | | -3 | | Unit | |--------------------|------|-----|------|-----|------|-----|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{CH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{ESBCH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBCL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBWP} | 1.15 | | 1.45 | | 1.73 | | ns | | t _{ESBRP} | 0.93 | | 1.15 | | 1.38 | | ns | | Symbol | -1 | | - | -2 | | -3 | | |----------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.23 | | 2.34 | | 2.47 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | toutco | 2.00 | 5.07 | 2.00 | 5.59 | 2.00 | 6.13 | ns | | t _{INSUPLL} | 2.12 | | 2.07 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | toutcople | 0.50 | 3.00 | 0.50 | 3.35 | - | - | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 2.86 | | 3.24 | | 3.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 5.07 | 2.00 | 5.59 | 2.00 | 6.13 | ns | | t _{XZBIDIR} | | 7.43 | | 8.23 | | 8.58 | ns | | t _{ZXBIDIR} | | 7.43 | | 8.23 | | 8.58 | ns | | t _{INSUBIDIRPLL} | 4.93 | | 5.48 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 3.00 | 0.50 | 3.35 | - | - | ns | | txzbidirpll | | 5.36 | | 5.99 | | - | ns | | t _{ZXBIDIRPLL} | | 5.36 | | 5.99 | | - | ns | Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices. | Table 73. EP20K200E f _{MAX} LE Timing Microparameters | | | | | | | | | | |----------------------------------------------------------------|-------|------|------|------|------|------|------|--|--| | Symbol | ol -1 | | | -2 | -3 | | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{SU} | 0.23 | | 0.24 | | 0.26 | | ns | | | | t _H | 0.23 | | 0.24 | | 0.26 | | ns | | | | t_{CO} | | 0.26 | | 0.31 | | 0.36 | ns | | | | t _{LUT} | | 0.70 | | 0.90 | | 1.14 | ns | | | | Symbol | -1 | | -2 | | -3 | | Unit | |--------------------|------|-----|------|-----|------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CLRP} | 0.19 | | 0.26 | | 0.35 | | ns | | t _{PREP} | 0.19 | | 0.26 | | 0.35 | | ns | | t _{ESBCH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBCL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBWP} | 1.25 | | 1.71 | | 2.28 | | ns | | t _{ESBRP} | 1.01 | | 1.38 | | 1.84 | | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |----------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.31 | | 2.44 | | 2.57 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns | | t _{INSUPLL} | 1.76 | | 1.85 | | - | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | toutcople | 0.50 | 2.65 | 0.50 | 2.95 | _ | - | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.77 | | 2.85 | | 3.11 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns | | t _{XZBIDIR} | | 7.59 | | 8.30 | | 9.09 | ns | | t _{ZXBIDIR} | | 7.59 | | 8.30 | | 9.09 | ns | | t _{INSUBIDIRPLL} | 2.50 | | 2.76 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 2.65 | 0.50 | 2.95 | - | - | ns | | ^t xzbidirpll | | 5.00 | | 5.43 | | - | ns | | tzxbidirpll | | 5.00 | | 5.43 | | - | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-------------------------|----------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.67 | | 1.91 | | 1.99 | ns | | t _{ESBSRC} | | 2.30 | | 2.66 | | 2.93 | ns | | t _{ESBAWC} | | 3.09 | | 3.58 | | 3.99 | ns | | t _{ESBSWC} | | 3.01 | | 3.65 | | 4.05 | ns | | t _{ESBWASU} | 0.54 | | 0.63 | | 0.65 | | ns | | t _{ESBWAH} | 0.36 | | 0.43 | | 0.42 | | ns | | t _{ESBWDSU} | 0.69 | | 0.77 | | 0.84 | | ns | | t _{ESBWDH} | 0.36 | | 0.43 | | 0.42 | | ns | | t _{ESBRASU} | 1.61 | | 1.77 | | 1.86 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.01 | | ns | | t _{ESBWESU} | 1.35 | | 1.47 | | 1.61 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.18 | | -0.30 | | -0.27 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | -0.02 | | -0.11 | | -0.03 | | ns | | t _{ESBRADDRSU} | 0.06 | | -0.01 | | -0.05 | | ns | | t _{ESBDATACO1} | | 1.16 | | 1.40 | | 1.54 | ns | | t _{ESBDATACO2} | | 2.18 | | 2.55 | | 2.85 | ns | | t _{ESBDD} | | 2.73 | | 3.17 | | 3.58 | ns | | t _{PD} | | 1.57 | | 1.83 | | 2.07 | ns | | t _{PTERMSU} | 0.92 | | 0.99 | | 1.18 | | ns | | t _{PTERMCO} | | 1.18 | | 1.43 | | 1.17 | ns | 101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.