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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.
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offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Each LAB contains dedicated logic for driving control signals to its LEs 
and ESBs. The control signals include clock, clock enable, asynchronous 
clear, asynchronous preset, asynchronous load, synchronous clear, and 
synchronous load signals. A maximum of six control signals can be used 
at a time. Although synchronous load and clear signals are generally used 
when implementing counters, they can also be used with other functions. 

Each LAB can use two clocks and two clock enable signals. Each LAB’s 
clock and clock enable signals are linked (e.g., any LE in a particular LAB 
using CLK1 will also use CLKENA1). LEs with the same clock but different 
clock enable signals either use both clock signals in one LAB or are placed 
into separate LABs. 

If both the rising and falling edges of a clock are used in a LAB, both LAB-
wide clock signals are used.

The LAB-wide control signals can be generated from the LAB local 
interconnect, global signals, and dedicated clock pins. The inherent low 
skew of the FastTrack Interconnect enables it to be used for clock 
distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:
(1) APEX 20KE devices have four dedicated clocks.
(2) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the 

LAB.
(3) The SYNCCLR signal can be generated by the local interconnect or global signals.
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Figure 6. APEX 20K Carry Chain
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Cascade Chain

With the cascade chain, the APEX 20K architecture can implement 
functions with a very wide fan-in. Adjacent LUTs can compute portions 
of a function in parallel; the cascade chain serially connects the 
intermediate values. The cascade chain can use a logical AND or logical OR 
(via De Morgan’s inversion) to connect the outputs of adjacent LEs. Each 
additional LE provides four more inputs to the effective width of a 
function, with a short cascade delay. Cascade chain logic can be created 
automatically by the Quartus II software Compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than ten LEs are implemented automatically by 
linking LABs together. For enhanced fitting, a long cascade chain skips 
alternate LABs in a MegaLAB structure. A cascade chain longer than one 
LAB skips either from an even-numbered LAB to the next even-numbered 
LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For 
example, the last LE of the first LAB in the upper-left MegaLAB structure 
carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 
shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in.

Figure 7. APEX 20K Cascade Chain
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Figure 12. APEX 20KE FastRow Interconnect

Table 9 summarizes how various elements of the APEX 20K architecture 
drive each other.
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Figure 13. Product-Term Logic in ESB

Note to Figure 13:
(1) APEX 20KE devices have four dedicated clocks.

Macrocells

APEX 20K macrocells can be configured individually for either sequential 
or combinatorial logic operation. The macrocell consists of three 
functional blocks: the logic array, the product-term select matrix, and the 
programmable register.

Combinatorial logic is implemented in the product terms. The product-
term select matrix allocates these product terms for use as either primary 
logic inputs (to the OR and XOR gates) to implement combinatorial 
functions, or as parallel expanders to be used to increase the logic 
available to another macrocell. One product term can be inverted; the 
Quartus II software uses this feature to perform DeMorgan’s inversion for 
more efficient implementation of wide OR functions. The Quartus II 
software Compiler can use a NOT-gate push-back technique to emulate an 
asynchronous preset. Figure 14 shows the APEX 20K macrocell.
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The programmable register also supports an asynchronous clear function. 
Within the ESB, two asynchronous clears are generated from global 
signals and the local interconnect. Each macrocell can either choose 
between the two asynchronous clear signals or choose to not be cleared. 
Either of the two clear signals can be inverted within the ESB. Figure 15 
shows the ESB control logic when implementing product-terms.

Figure 15. ESB Product-Term Mode Control Logic

Note to Figure 15:
(1) APEX 20KE devices have four dedicated clocks.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a 
neighboring macrocell to implement fast, complex logic functions. 
Parallel expanders allow up to 32 product terms to feed the macrocell OR 
logic directly, with two product terms provided by the macrocell and 30 
parallel expanders provided by the neighboring macrocells in the ESB.

The Quartus II software Compiler can allocate up to 15 sets of up to two 
parallel expanders per set to the macrocells automatically. Each set of two 
parallel expanders incurs a small, incremental timing delay. Figure 16 
shows the APEX 20K parallel expanders.
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Figure 16. APEX 20K Parallel Expanders
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The ESB can implement various types of memory blocks, including 
dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input 
and output registers; the input registers synchronize writes, and the 
output registers can pipeline designs to improve system performance. The 
ESB offers a dual-port mode, which supports simultaneous reads and 
writes at two different clock frequencies. Figure 17 shows the ESB block 
diagram.

Figure 17. ESB Block Diagram
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ESBs can implement synchronous RAM, which is easier to use than 
asynchronous RAM. A circuit using asynchronous RAM must generate 
the RAM write enable (WE) signal, while ensuring that its data and address 
signals meet setup and hold time specifications relative to the WE signal. 
In contrast, the ESB’s synchronous RAM generates its own WE signal and 
is self-timed with respect to the global clock. Circuits using the ESB’s self-
timed RAM must only meet the setup and hold time specifications of the 
global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can 
be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can 
be driven by the local interconnect, an adjacent LE can drive it directly for 
fast memory access. ESB outputs drive the MegaLAB and FastTrack 
Interconnect. In addition, ten ESB outputs, nine of which are unique 
output lines, drive the local interconnect for fast connection to adjacent 
LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the 
following sizes: 128 × 16, 256 × 8, 512 × 4, 1,024 × 2, or 2,048 × 1. By 
combining multiple ESBs, the Quartus II software implements larger 
memory blocks automatically. For example, two 128 × 16 RAM blocks can 
be combined to form a 128 × 32 RAM block, and two 512 × 4 RAM blocks 
can be combined to form a 512 × 8 RAM block. Memory performance does 
not degrade for memory blocks up to 2,048 words deep. Each ESB can 
implement a 2,048-word-deep memory; the ESBs are used in parallel, 
eliminating the need for any external control logic and its associated 
delays.

To create a high-speed memory block that is more than 2,048 words deep, 
ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column 
of MegaLAB structures, and drives the MegaLAB interconnect and row 
and column FastTrack Interconnect throughout the column. Each ESB 
incorporates a programmable decoder to activate the tri-state driver 
appropriately. For instance, to implement 8,192-word-deep memory, four 
ESBs are used. Eleven address lines drive the ESB memory, and two more 
drive the tri-state decoder. Depending on which 2,048-word memory 
page is selected, the appropriate ESB driver is turned on, driving the 
output to the tri-state line. The Quartus II software automatically 
combines ESBs with tri-state lines to form deeper memory blocks. The 
internal tri-state control logic is designed to avoid internal contention and 
floating lines. See Figure 18.
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Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such 
as networking, communications, data compression, and cache 
management.

The APEX 20KE on-chip CAM provides faster system performance than 
traditional discrete CAM. Integrating CAM and logic into the APEX 20KE 
device eliminates off-chip and on-chip delays, improving system 
performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or 
deeper CAM can be implemented by combining multiple CAMs with 
some ancillary logic implemented in LEs. The Quartus II software 
combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing “don’t care” bits into words of the memory. The 
“don’t-care” bit can be used as a mask for CAM comparisons; any bit set 
to “don’t-care” has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the 
ESB outputs an encoded address of the data’s location. For instance, if the 
data is located in address 12, the ESB output is 12. When unencoded, the 
ESB uses its 16 outputs to show the location of the data over two clock 
cycles. In this case, if the data is located in address 12, the 12th output line 
goes high. When using unencoded outputs, two clock cycles are required 
to read the output because a 16-bit output bus is used to show the status 
of 32 words. 

The encoded output is better suited for designs that ensure duplicate data 
is not written into the CAM. If duplicate data is written into two locations, 
the CAM’s output will be incorrect. If the CAM may contain duplicate 
data, the unencoded output is a better solution; CAM with unencoded 
outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be 
written during system operation. In most cases, two clock cycles are 
required to write each word into CAM. When “don’t-care” bits are used, 
a third clock cycle is required.
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f For more information on APEX 20KE devices and CAM, see Application 
Note 119 (Implementing High-Speed Search Applications with APEX CAM).

Driving Signals to the ESB

ESBs provide flexible options for driving control signals. Different clocks 
can be used for the ESB inputs and outputs. Registers can be inserted 
independently on the data input, data output, read address, write 
address, WE, and RE signals. The global signals and the local interconnect 
can drive the WE and RE signals. The global signals, dedicated clock pins, 
and local interconnect can drive the ESB clock signals. Because the LEs 
drive the local interconnect, the LEs can control the WE and RE signals and 
the ESB clock, clock enable, and asynchronous clear signals. Figure 24 
shows the ESB control signal generation logic.

Figure 24. ESB Control Signal Generation

Note to Figure 24:
(1) APEX 20KE devices have four dedicated clocks.

An ESB is fed by the local interconnect, which is driven by adjacent LEs 
(for high-speed connection to the ESB) or the MegaLAB interconnect. The 
ESB can drive the local, MegaLAB, or FastTrack Interconnect routing 
structure to drive LEs and IOEs in the same MegaLAB structure or 
anywhere in the device.
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Table 24. APEX 20K 5.0-V Tolerant Device Recommended Operating Conditions Note (2)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage for internal logic 
and input buffers

(4), (5) 2.375 
(2.375)

2.625 
(2.625)

V

VCCIO Supply voltage for output buffers, 
3.3-V operation

(4), (5) 3.00 (3.00) 3.60 (3.60) V

Supply voltage for output buffers, 
2.5-V operation

(4), (5) 2.375 
(2.375)

2.625 
(2.625)

V

VI Input voltage (3), (6) –0.5 5.75 V

VO Output voltage 0 VCCIO V

TJ Junction temperature For commercial use 0 85 ° C

For industrial use –40 100 ° C

tR Input rise time 40 ns

tF Input fall time 40 ns

Table 25. APEX 20K 5.0-V Tolerant Device DC Operating Conditions  (Part 1 of 2) Notes (2), (7), (8)

Symbol Parameter Conditions Min Typ Max Unit
VIH High-level input voltage 1.7, 0.5 × VCCIO 

(9)
5.75 V

VIL Low-level input voltage –0.5 0.8, 0.3 × VCCIO 
(9)

V

VOH 3.3-V high-level TTL output 
voltage

IOH = –8 mA DC, 
VCCIO = 3.00 V (10)

2.4 V

3.3-V high-level CMOS output 
voltage

IOH = –0.1 mA DC, 
VCCIO = 3.00 V (10)

VCCIO – 0.2 V

3.3-V high-level PCI output voltage IOH = –0.5 mA DC, 
VCCIO = 3.00 to 3.60 V 
(10)

0.9 × VCCIO V

2.5-V high-level output voltage IOH = –0.1 mA DC, 
VCCIO = 2.30 V (10)

2.1 V

IOH = –1 mA DC, 
VCCIO = 2.30 V (10) 

2.0 V

IOH = –2 mA DC, 
VCCIO = 2.30 V (10)

1.7 V
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Notes to Tables 23 through 26:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) All APEX 20K devices are 5.0-V tolerant.
(3) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.75 V for 

input currents less than 100 mA and periods shorter than 20 ns.
(4) Numbers in parentheses are for industrial-temperature-range devices.
(5) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(6) All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(7) Typical values are for TA= 25° C, VCCINT = 2.5 V, and VCCIO = 2.5 or 3.3 V. 
(8) These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on

page 62.
(9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the 

input buffers are 3.3-V PCI compliant when VCCIO and VCCINT meet the relationship shown in Figure 33 on page 68. 
(10) The IOH parameter refers to high-level TTL, PCI or CMOS output current.
(11) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(12) This value is specified for normal device operation. The value may vary during power-up.
(13) Pin pull-up resistance values will be lower if an external source drives the pin higher than VCCIO.
(14) Capacitance is sample-tested only.

Tables 27 through 30 provide information on absolute maximum ratings, 
recommended operating conditions, DC operating conditions, and 
capacitance for 1.8-V APEX 20KE devices.

Table 26. APEX 20K 5.0-V Tolerant Device Capacitance Notes (2), (14)

Symbol Parameter Conditions Min Max Unit
CIN Input capacitance VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance on dedicated 
clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF

Table 27. APEX 20KE Device Absolute Maximum Ratings Note (1)

Symbol Parameter Conditions Min Max Unit

VCCINT Supply voltage With respect to ground (2) –0.5 2.5 V

VCCIO –0.5 4.6 V

VI DC input voltage –0.5 4.6 V

IOUT DC output current, per pin –25 25 mA

TSTG Storage temperature No bias –65 150 ° C

TAMB Ambient temperature Under bias –65 135 ° C

TJ Junction temperature PQFP, RQFP, TQFP, and BGA packages, 
under bias

135 ° C

Ceramic PGA packages, under bias 150 ° C
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Note to Tables 32 and 33:
(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional 
timing microparameters for the fMAX timing model.

Table 34. APEX 20KE LE Timing Microparameters

Symbol Parameter

tSU LE register setup time before clock

tH LE register hold time after clock

tCO LE register clock-to-output delay

tLUT LUT delay for data-in to data-out

Table 35. APEX 20KE ESB Timing Microparameters

Symbol Parameter

tESBARC ESB Asynchronous read cycle time

tESBSRC ESB Synchronous read cycle time

tESBAWC ESB Asynchronous write cycle time

tESBSWC ESB Synchronous write cycle time

tESBWASU ESB write address setup time with respect to WE

tESBWAH ESB write address hold time with respect to WE

tESBWDSU ESB data setup time with respect to WE

tESBWDH ESB data hold time with respect to WE

tESBRASU ESB read address setup time with respect to RE

tESBRAH ESB read address hold time with respect to RE

tESBWESU ESB WE setup time before clock when using input register

tESBWEH ESB WE hold time after clock when using input register

tESBDATASU ESB data setup time before clock when using input register

tESBDATAH ESB data hold time after clock when using input register

tESBWADDRSU ESB write address setup time before clock when using input 
registers

tESBRADDRSU ESB read address setup time before clock when using input 
registers

tESBDATACO1 ESB clock-to-output delay when using output registers

tESBDATACO2 ESB clock-to-output delay without output registers

tESBDD ESB data-in to data-out delay for RAM mode

tPD ESB Macrocell input to non-registered output

tPTERMSU ESB Macrocell register setup time before clock

tPTERMCO ESB Macrocell register clock-to-output delay 
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Table 50. EP20K30E fMAX ESB Timing Microparameters 

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tESBARC 2.03 2.86 4.24 ns

tESBSRC 2.58 3.49 5.02 ns

tESBAWC 3.88 5.45 8.08 ns

tESBSWC 4.08 5.35 7.48 ns

tESBWASU 1.77 2.49 3.68 ns

tESBWAH 0.00 0.00 0.00 ns

tESBWDSU 1.95 2.74 4.05 ns

tESBWDH 0.00 0.00 0.00 ns

tESBRASU 1.96 2.75 4.07 ns

tESBRAH 0.00 0.00 0.00 ns

tESBWESU 1.80 2.73 4.28 ns

tESBWEH 0.00 0.00 0.00 ns

tESBDATASU 0.07 0.48 1.17 ns

tESBDATAH 0.13 0.13 0.13 ns

tESBWADDRSU 0.30 0.80 1.64 ns

tESBRADDRSU 0.37 0.90 1.78 ns

tESBDATACO1 1.11 1.32 1.67 ns

tESBDATACO2 2.65 3.73 5.53 ns

tESBDD 3.88 5.45 8.08 ns

tPD 1.91 2.69 3.98 ns

tPTERMSU 1.04 1.71 2.82 ns

tPTERMCO 1.13 1.34 1.69 ns

Table 51. EP20K30E fMAX Routing Delays

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tF1-4 0.24 0.27 0.31 ns

tF5-20 1.03 1.14 1.30 ns

tF20+ 1.42 1.54 1.77 ns
Altera Corporation  83
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Table 52. EP20K30E Minimum Pulse Width Timing Parameters 

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tCH 0.55 0.78 1.15 ns

tCL 0.55 0.78 1.15 ns

tCLRP 0.22 0.31 0.46 ns

tPREP 0.22 0.31 0.46 ns

tESBCH 0.55 0.78 1.15 ns

tESBCL 0.55 0.78 1.15 ns

tESBWP 1.43 2.01 2.97 ns

tESBRP 1.15 1.62 2.39 ns

Table 53. EP20K30E External Timing Parameters

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tI N S U 2.02 2.13 2.24 ns

tI N H 0.00 0.00 0.00 ns

tO U T C O 2.00 4.88 2.00 5.36 2.00 5.88 ns

tI N S U P L L  2.11 2.23 - ns

tI N H P L L  0.00 0.00 - ns

tO U T C O P L L 0.50 2.60 0.50 2.88 - - ns

Table 54. EP20K30E External Bidirectional Timing Parameters

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tI N S U B I D I R 1.85 1.77 1.54 ns

tI N H B I D I R 0.00 0.00 0.00 ns

tO U T C O B I D I R 2.00 4.88 2.00 5.36 2.00 5.88 ns

tX Z B I D I R 7.48 8.46 9.83 ns

tZ X B I D I R 7.48 8.46 9.83 ns

tI N S U B I D I R P L L 4.12 4.24 - ns

tI N H B I D I R P L L 0.00 0.00 - ns

tO U T C O B I D I R P L L 0.50 2.60 0.50 2.88 - - ns

tX Z B I D I R P L L 5.21 5.99 - ns

tZ X B I D I R P L L 5.21 5.99 - ns
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Tables 61 through 66 describe fMAX LE Timing Microparameters, 
fMAX ESB Timing Microparameters, fMAX Routing Delays, Minimum 
Pulse Width Timing Parameters, External Timing Parameters, and 
External Bidirectional Timing Parameters for EP20K100E 
APEX 20KE devices.

Table 60. EP20K60E External Bidirectional Timing Parameters

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tI N S U B I D I R 2.77 2.91 3.11 ns

tI N H B ID IR 0.00 0.00 0.00 ns

tO U T C O B I D I R 2.00 4.84 2.00 5.31 2.00 5.81 ns

tX Z B I D I R 6.47 7.44 8.65 ns

tZ X B I D I R 6.47 7.44 8.65 ns

tI N S U B I D I R P L L 3.44 3.24 - ns

tI N H B ID IR P L L 0.00 0.00 - ns

tO U T C O B I D I R P L L 0.50 3.37 0.50 3.69 - - ns

tX Z B I D I R P L L 5.00 5.82 - ns

tZ X B I D I R P L L 5.00 5.82 - ns

Table 61. EP20K100E fMAX LE Timing Microparameters 

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tSU 0.25 0.25 0.25 ns

tH 0.25 0.25 0.25 ns

tCO 0.28 0.28 0.34 ns

tLUT 0.80 0.95 1.13 ns



APEX 20K Programmable Logic Device Family Data Sheet
Tables 67 through 72 describe fMAX LE Timing Microparameters, 
fMAX ESB Timing Microparameters, fMAX Routing Delays, Minimum 
Pulse Width Timing Parameters, External Timing Parameters, and 
External Bidirectional Timing Parameters for EP20K160E APEX 
20KE devices.

Table 67. EP20K160E fMAX LE Timing Microparameters 

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tSU 0.22 0.24 0.26 ns

tH 0.22 0.24 0.26 ns

tCO 0.25 0.31 0.35 ns

tLUT 0.69 0.88 1.12 ns
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APEX 20K Programmable Logic Device Family Data Sheet
Tables 79 through 84 describe fMAX LE Timing Microparameters, fMAX 
ESB Timing Microparameters, fMAX Routing Delays, Minimum Pulse 
Width Timing Parameters, External Timing Parameters, and External 
Bidirectional Timing Parameters for EP20K300E APEX 20KE devices.

Table 78. EP20K200E External Bidirectional Timing Parameters

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tI N S U B I D I R 2.81 3.19 3.54 ns

tI N H B ID IR 0.00 0.00 0.00 ns

tO U T C O B I D I R 2.00 5.12 2.00 5.62 2.00 6.11 ns

tX Z B I D I R 7.51 8.32 8.67 ns

tZ X B I D I R 7.51 8.32 8.67 ns

tI N S U B I D I R P L L 3.30 3.64 - ns

tI N H B ID IR P L L 0.00 0.00 - ns

tO U T C O B I D I R P L L 0.50 3.01 0.50 3.36 - - ns

tX Z B I D I R P L L 5.40 6.05 - ns

tZ X B I D I R P L L 5.40 6.05 - ns

Table 79. EP20K300E fMAX LE Timing Microparameters 

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tSU 0.16 0.17 0.18 ns

tH 0.31 0.33 0.38 ns

tCO 0.28 0.38 0.51 ns

tLUT 0.79 1.07 1.43 ns
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APEX 20K Programmable Logic Device Family Data Sheet
Table 86. EP20K400E fMAX ESB Timing Microparameters 

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tESBARC 1.67 1.91 1.99 ns

tESBSRC 2.30 2.66 2.93 ns

tESBAWC 3.09 3.58 3.99 ns

tESBSWC 3.01 3.65 4.05 ns

tESBWASU 0.54 0.63 0.65 ns

tESBWAH 0.36 0.43 0.42 ns

tESBWDSU 0.69 0.77 0.84 ns

tESBWDH 0.36 0.43 0.42 ns

tESBRASU 1.61 1.77 1.86 ns

tESBRAH 0.00 0.00 0.01 ns

tESBWESU 1.35 1.47 1.61 ns

tESBWEH 0.00 0.00 0.00 ns

tESBDATASU -0.18 -0.30 -0.27 ns

tESBDATAH 0.13 0.13 0.13 ns

tESBWADDRSU -0.02 -0.11 -0.03 ns

tESBRADDRSU 0.06 -0.01 -0.05 ns

tESBDATACO1 1.16 1.40 1.54 ns

tESBDATACO2 2.18 2.55 2.85 ns

tESBDD 2.73 3.17 3.58 ns

tPD 1.57 1.83 2.07 ns

tPTERMSU 0.92 0.99 1.18 ns

tPTERMCO 1.18 1.43 1.17 ns
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APEX 20K Programmable Logic Device Family Data Sheet
Tables 97 through 102 describe fMAX LE Timing Microparameters, fMAX 
ESB Timing Microparameters, fMAX Routing Delays, Minimum Pulse 
Width Timing Parameters, External Timing Parameters, and External 
Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices.

Table 97. EP20K1000E fMAX LE Timing Microparameters

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Unit

Min Max Min Max Min Max

tSU 0.25 0.25 0.25 ns

tH 0.25 0.25 0.25 ns

tCO 0.28 0.32 0.33 ns

tLUT 0.80 0.95 1.13 ns
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