

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

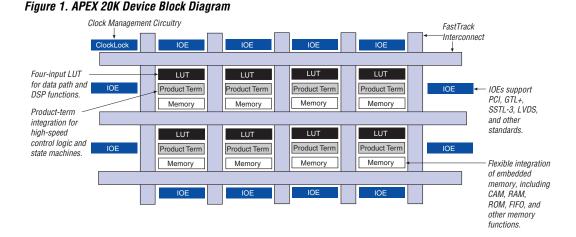
Details	
Product Status	Obsolete
Number of LABs/CLBs	416
Number of Logic Elements/Cells	4160
Total RAM Bits	53248
Number of I/O	189
Number of Gates	263000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k100qc240-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

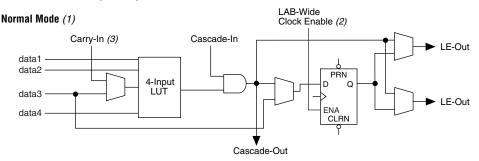
General Description

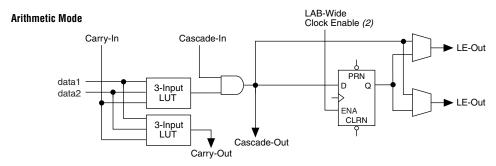
APEXTM 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and product-term-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, register-intensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device.

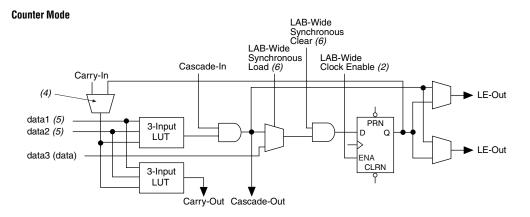

APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices.

Functional Description

APEX 20K devices incorporate LUT-based logic, product-term-based logic, and memory into one device. Signal interconnections within APEX 20K devices (as well as to and from device pins) are provided by the FastTrack[®] Interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device.


Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KE devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards.


The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs ensures that the APEX 20K device can implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. The abundance of ESBs ensures that designers can create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20K device.



Altera Corporation 9

Figure 8. APEX 20K LE Operating Modes

Notes to Figure 8:

- (1) LEs in normal mode support register packing.
- (2) There are two LAB-wide clock enables per LAB.
- (3) When using the carry-in in normal mode, the packed register feature is unavailable.
- (4) A register feedback multiplexer is available on LE1 of each LAB.
- (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB.
- (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.

ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays.

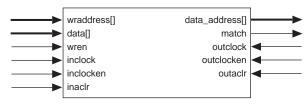
To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18.

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.



Figure 21. ESB in Input/Output Clock Mode Note (1)


Notes to Figure 21:

- (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.
- (2) APEX 20KE devices have four dedicated clocks.

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

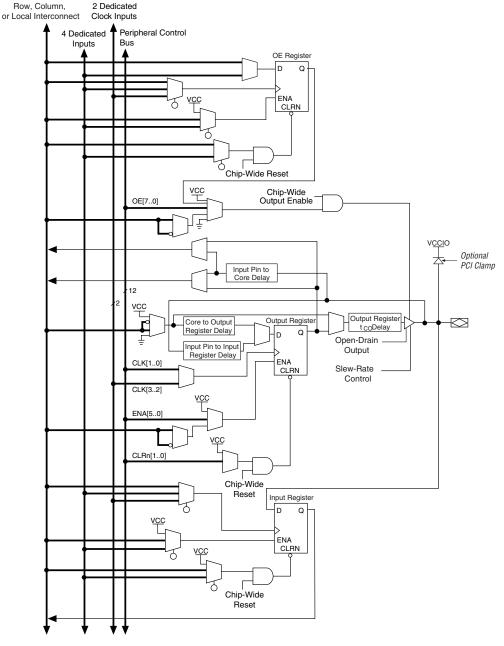
When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

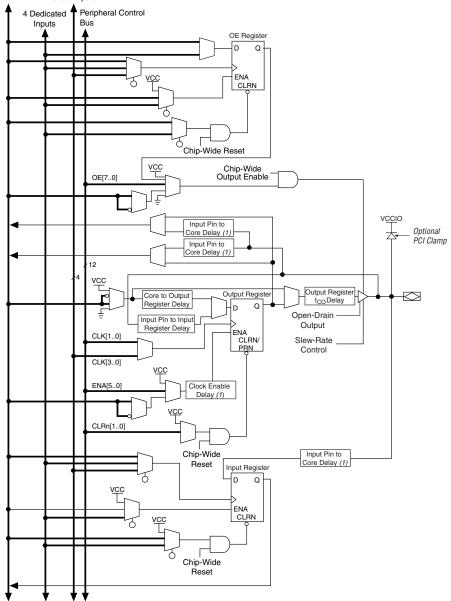
CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.



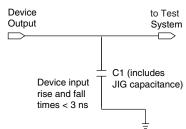

Figure 25. APEX 20K Bidirectional I/O Registers Note (1)

Note to Figure 25:

(1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Figure 26. APEX 20KE Bidirectional I/O Registers Notes (1), (2)

Row, Column, FastRow, 4 Dedicated or Local Interconnect Clock Inputs



Notes to Figure 26:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Symbol	Parameter	I/O Standard	-1X Speed Grade		-2X Speed Grade		Units
			Min	Max	Min	Max	
f _{VCO} (4)	Voltage controlled oscillator operating range		200	500	200	500	MHz
f _{CLOCK0}	Clock0 PLL output frequency for internal use		1.5	335	1.5	200	MHz
f _{CLOCK1}	Clock1 PLL output frequency for internal use		20	335	20	200	MHz
f _{CLOCK0_EXT}	Output clock frequency for	3.3-V LVTTL	1.5	245	1.5	226	MHz
_	external clock0 output	2.5-V LVTTL	1.5	234	1.5	221	MHz
		1.8-V LVTTL	1.5	223	1.5	216	MHz
		GTL+	1.5	205	1.5	193	MHz
		SSTL-2 Class	1.5	158	1.5	157	MHz
		SSTL-2 Class	1.5	142	1.5	142	MHz
		SSTL-3 Class	1.5	166	1.5	162	MHz
		SSTL-3 Class	1.5	149	1.5	146	MHz
		LVDS	1.5	420	1.5	350	MHz
f _{CLOCK1_EXT}	Output clock frequency for	3.3-V LVTTL	20	245	20	226	MHz
	external clock1 output	2.5-V LVTTL	20	234	20	221	MHz
		1.8-V LVTTL	20	223	20	216	MHz
		GTL+	20	205	20	193	MHz
		SSTL-2 Class	20	158	20	157	MHz
		SSTL-2 Class	20	142	20	142	MHz
		SSTL-3 Class	20	166	20	162	MHz
		SSTL-3 Class	20	149	20	146	MHz
		LVDS	20	420	20	350	MHz

Figure 32. APEX 20K AC Test Conditions Note (1)

Note to Figure 32:

(1) Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

Operating Conditions

Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices.

Table 2	Table 23. APEX 20K 5.0-V Tolerant Device Absolute Maximum Ratings Notes (1), (2)										
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CCINT}	Supply voltage	With respect to ground (3)	-0.5	3.6	V						
V _{CCIO}			-0.5	4.6	V						
V _I	DC input voltage		-2.0	5.75	V						
I _{OUT}	DC output current, per pin		-25	25	mA						
T _{STG}	Storage temperature	No bias	-65	150	° C						
T _{AMB}	Ambient temperature	Under bias	-65	135	° C						
TJ	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	° C						
		Ceramic PGA packages, under bias		150	°C						

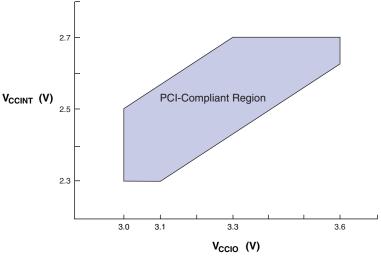


Figure 33. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance

Figure 34 shows the typical output drive characteristics of APEX 20K devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compatible with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). 5-V tolerant APEX 20K devices in the -1 speed grade are 5-V PCI compliant over all operating conditions.

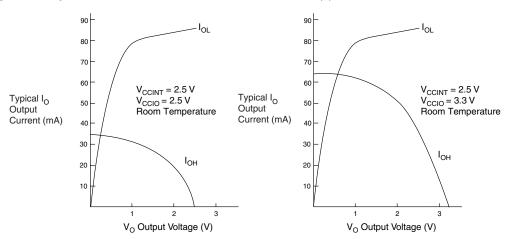


Figure 34. Output Drive Characteristics of APEX 20K Device Note (1)

Note to Figure 34:

(1) These are transient (AC) currents.

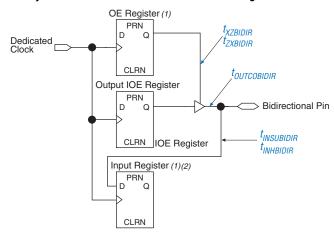


Figure 40. Synchronous Bidirectional Pin External Timing

Notes to Figure 40:

- (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software.
- (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells=Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells=ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade.

Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68.

Symbol	Parameter				
t _{SU}	LE register setup time before clock				
t _H	LE register hold time after clock				
t _{CO}	LE register clock-to-output delay				
t _{LUT}	LUT delay for data-in				
t _{ESBRC}	ESB Asynchronous read cycle time				
t _{ESBWC}	ESB Asynchronous write cycle time				
t _{ESBWESU}	ESB WE setup time before clock when using input register				
t _{ESBDATASU}	ESB data setup time before clock when using input register				
t _{ESBDATAH}	ESB data hold time after clock when using input register				
t _{ESBADDRSU}	ESB address setup time before clock when using input registers				
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers				

Table 36. APEX 20KE Routing Timing Microparameters Note (1)						
Symbol Parameter						
t _{F1-4}	Fanout delay using Local Interconnect					
t _{F5-20}	Fanout delay estimate using MegaLab Interconnect					
t _{F20+}	Fanout delay estimate using FastTrack Interconnect					

Note to Table 36:

(1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

Table 37. APE	Table 37. APEX 20KE Functional Timing Microparameters					
Symbol	Parameter					
TCH	Minimum clock high time from clock pin					
TCL	Minimum clock low time from clock pin					
TCLRP	LE clear Pulse Width					
TPREP	LE preset pulse width					
TESBCH	Clock high time for ESB					
TESBCL	Clock low time for ESB					
TESBWP	Write pulse width					
TESBRP	Read pulse width					

Tables 38 and 39 describe the APEX 20KE external timing parameters.

Table 38. APEX 20KE External Timing Parameters Note (1)						
Symbol	Clock Parameter	Conditions				
t _{INSU}	Setup time with global clock at IOE input register					
t _{INH}	Hold time with global clock at IOE input register					
t _{OUTCO}	Clock-to-output delay with global clock at IOE output register	C1 = 10 pF				
t _{INSUPLL}	Setup time with PLL clock at IOE input register					
t _{INHPLL}	Hold time with PLL clock at IOE input register					
t _{OUTCOPLL}	Clock-to-output delay with PLL clock at IOE output register	C1 = 10 pF				

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	1.9		2.3		2.6		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns
t _{INSUBIDIR} (2)	1.1		1.2		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (2)	0.5	2.7	0.5	3.1	-	_	ns
t _{XZBIDIR} (2)		4.3		5.0		_	ns
t _{ZXBIDIR} (2)		4.3		5.0		_	ns

Table 47. EP20K400 External Timing Parameters										
Symbol	-1 Speed Grade		-2 Spec	-2 Speed Grade		-3 Speed Grade				
	Min	Max	Min	Max	Min	Max	1			
t _{INSU} (1)	1.4		1.8		2.0		ns			
t _{INH} (1)	0.0		0.0		0.0		ns			
t _{OUTCO} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns			
t _{INSU} (2)	0.4		1.0		-		ns			
t _{INH} (2)	0.0		0.0		_		ns			
t _{OUTCO} (2)	0.5	3.1	0.5	4.1	_	_	ns			

Table 48. EP20K400 External Bidirections	I Timina	Parameters 1 4 1
--	----------	------------------

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	1.4		1.8		2.0		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns
t _{XZBIDIR} (1)		7.3		8.9		10.3	ns
t _{ZXBIDIR} (1)		7.3		8.9		10.3	ns
t _{INSUBIDIR} (2)	0.5		1.0		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
toutcobidir (2)	0.5	3.1	0.5	4.1	-	-	ns
t _{XZBIDIR} (2)		6.2		7.6		-	ns
t _{ZXBIDIR} (2)		6.2		7.6		_	ns

Notes to Tables 43 through 48:

- (1) This parameter is measured without using ClockLock or ClockBoost circuits.
- (2) This parameter is measured using ClockLock or ClockBoost circuits.

Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices.

Table 49. EP20K30E f _{MAX} LE Timing Microparameters										
Symbol	_	1	-	-2		3	Unit			
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.01		0.02		0.02		ns			
t _H	0.11		0.16		0.23		ns			
t _{CO}		0.32		0.45		0.67	ns			
t _{LUT}		0.85		1.20		1.77	ns			

Symbol	-1		-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{CH}	0.55		0.78		1.15		ns
t _{CL}	0.55		0.78		1.15		ns
t _{CLRP}	0.22		0.31		0.46		ns
t _{PREP}	0.22		0.31		0.46		ns
t _{ESBCH}	0.55		0.78		1.15		ns
t _{ESBCL}	0.55		0.78		1.15		ns
t _{ESBWP}	1.43		2.01		2.97		ns
t _{ESBRP}	1.15		1.62		2.39		ns

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	7
t _{INSU}	2.02		2.13		2.24		ns
t _{INH}	0.00		0.00		0.00		ns
t _{ouтco}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{INSUPLL}	2.11		2.23		=		ns
t _{INHPLL}	0.00		0.00		=		ns
t _{OUTCOPLL}	0.50	2.60	0.50	2.88	-	-	ns

Symbol	-1		-2		-	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	1.85		1.77		1.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{XZBIDIR}		7.48		8.46		9.83	ns
t _{ZXBIDIR}		7.48		8.46		9.83	ns
t _{INSUBIDIRPLL}	4.12		4.24		=		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	2.60	0.50	2.88	-	-	ns
t _{XZBIDIRPLL}		5.21		5.99		-	ns
t _{ZXBIDIRPLL}		5.21		5.99		-	ns

Symbol	-	1		-2	;	Unit	
	Min	Max	Min	Max	Min	Max	-
t _{ESBARC}		1.83		2.57		3.79	ns
t _{ESBSRC}		2.46		3.26		4.61	ns
t _{ESBAWC}		3.50		4.90		7.23	ns
t _{ESBSWC}		3.77		4.90		6.79	ns
t _{ESBWASU}	1.59		2.23		3.29		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.75		2.46		3.62		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.76		2.47		3.64		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.68		2.49		3.87		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.08		0.43		1.04		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.29		0.72		1.46		ns
t _{ESBRADDRSU}	0.36		0.81		1.58		ns
t _{ESBDATACO1}		1.06		1.24		1.55	ns
t _{ESBDATACO2}		2.39		3.35		4.94	ns
t _{ESBDD}		3.50		4.90		7.23	ns
t _{PD}		1.72		2.41		3.56	ns
t _{PTERMSU}	0.99		1.56		2.55		ns
t _{PTERMCO}		1.07		1.26		1.08	ns

Table 87. EP2	Table 87. EP20K400E f _{MAX} Routing Delays											
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade -3		d Grade	Unit					
	Min	Max	Min	Max	Min	Max						
t _{F1-4}		0.25		0.25		0.26	ns					
t _{F5-20}		1.01		1.12		1.25	ns					
t _{F20+}		3.71		3.92		4.17	ns					

Table 88. EP20K400E Minimum Pulse Width Timing Parameters											
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	Unit					
	Min	Max	Min	Max	Min	Max					
t _{CH}	1.36		2.22		2.35		ns				
t _{CL}	1.36		2.26		2.35		ns				
t _{CLRP}	0.18		0.18		0.19		ns				
t _{PREP}	0.18		0.18		0.19		ns				
t _{ESBCH}	1.36		2.26		2.35		ns				
t _{ESBCL}	1.36		2.26		2.35		ns				
t _{ESBWP}	1.17		1.38		1.56		ns				
t _{ESBRP}	0.94		1.09		1.25		ns				

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.51		2.64		2.77		ns
t _{INH}	0.00		0.00		0.00		ns
t _{OUTCO}	2.00	5.25	2.00	5.79	2.00	6.32	ns
t _{INSUPLL}	3.221		3.38		=		ns
t _{INHPLL}	0.00		0.00		=		ns
t _{OUTCOPLL}	0.50	2.25	0.50	2.45	-	-	ns

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{INSUBIDIR}	3.22		3.33		3.51		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
toutcobidir	2.00	5.75	2.00	6.33	2.00	6.90	ns
t _{XZBIDIR}		6.31		7.09		7.76	ns
tzxbidir		6.31		7.09		7.76	ns
t _{INSUBIDIRPL} L	3.25		3.26				ns
t _{INHBIDIRPLL}	0.00		0.00				ns
toutcobidirpll	0.50	2.25	0.50	2.99			ns
txzbidirpll		2.81		3.80			ns
t _{ZXBIDIRPLL}		2.81		3.80			ns

Tables 103 through 108 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1500E APEX 20KE devices.

Table 103. EP20K1500E f _{MAX} LE Timing Microparameters											
Symbol	-1 Spee	d Grade	-2 Speed Grade -3 Speed		d Grade	Unit					
	Min	Max	Min	Max	Min	Max	7				
t _{SU}	0.25		0.25		0.25		ns				
t _H	0.25		0.25		0.25		ns				
t _{CO}		0.28		0.32		0.33	ns				
t _{LUT}		0.80		0.95		1.13	ns				

Revision History

The information contained in the *APEX 20K Programmable Logic Device Family Data Sheet* version 5.1 supersedes information published in previous versions.

Version 5.1

APEX 20K Programmable Logic Device Family Data Sheet version 5.1 contains the following changes:

- In version 5.0, the VI input voltage spec was updated in Table 28 on page 63.
- In version 5.0, *Note* (5) to Tables 27 through 30 was revised.
- Added *Note* (2) to Figure 21 on page 33.

Version 5.0

APEX 20K Programmable Logic Device Family Data Sheet version 5.0 contains the following changes:

- Updated Tables 23 through 26. Removed 2.5-V operating condition tables because all APEX 20K devices are now 5.0-V tolerant.
- Updated conditions in Tables 33, 38 and 39.
- Updated data for t_{ESBDATAH} parameter.

Version 4.3

APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains the following changes:

- Updated Figure 20.
- Updated *Note* (2) to Table 13.
- Updated notes to Tables 27 through 30.

Version 4.2

APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains the following changes:

- Updated Figure 29.
- Updated *Note* (1) to Figure 29.