Intel - EP20K100QI240-3 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	416
Number of Logic Elements/Cells	4160
Total RAM Bits	53248
Number of I/O	189
Number of Gates	263000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k100qi240-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

APEX[™] 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and productterm-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, registerintensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device.

APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices. All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required.

APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy.

After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations.

The Quartus II software provides NativeLink interfaces to other industrystandard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture.

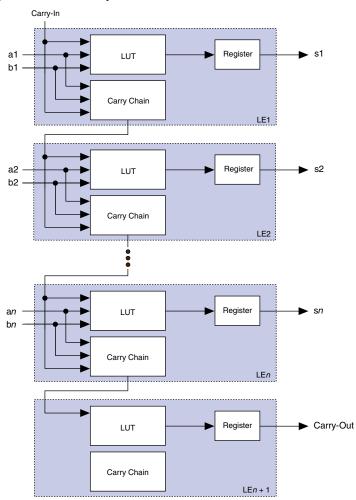


Figure 6. APEX 20K Carry Chain

LE Operating Modes

The APEX 20K LE can operate in one of the following three modes:

- Normal mode
- Arithmetic mode
- Counter mode

Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes. The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

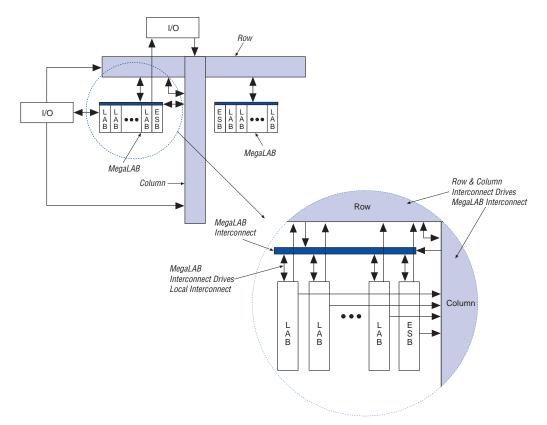
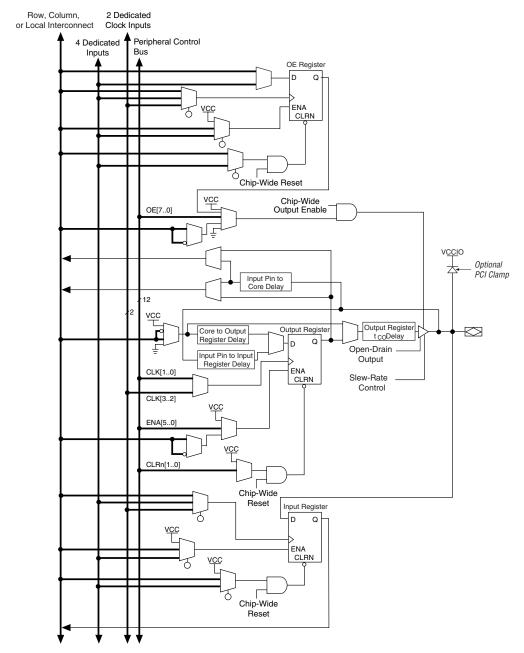




Figure 10. FastTrack Connection to Local Interconnect

Figure 25. APEX 20K Bidirectional I/O Registers Note (1)

Altera Corporation

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect.

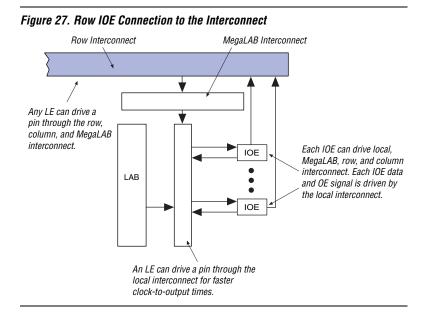
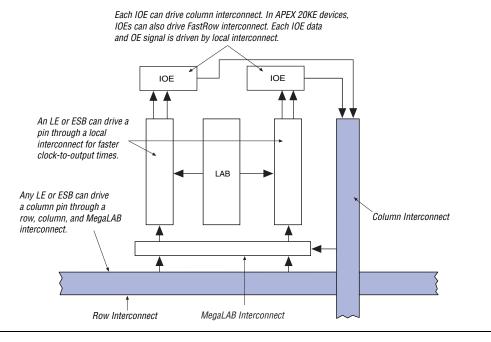



Figure 28 shows how a column IOE connects to the interconnect.

Figure 28. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed.

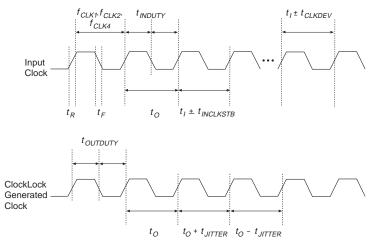


Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

Note to Figure 30:

(1) The tI parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

Symbol	Parameter	Min	Мах	Unit	
f _{OUT}	Output frequency	25	180	MHz	
f _{CLK1} (1)	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	180 (1)	MHz	
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	90	MHz	
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	48	MHz	
toutduty	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%	
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2)		25,000 (3)	PPM	
t _R	Input rise time		5	ns	
t _F	Input fall time		5	ns	
t _{LOCK}	Time required for ClockLock/ClockBoost to acquire lock (4)		10	μs	

٦

Table 2	8. APEX 20KE Device Recommende	ed Operating Conditions			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	1.71 (1.71)	1.89 (1.89)	V
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V
	Supply voltage for output buffers, 1.8-V operation	(3), (4)	1.71 (1.71)	1.89 (1.89)	V
VI	Input voltage	(5), (6)	-0.5	4.0	V
Vo	Output voltage		0	V _{CCIO}	V
ТJ	Junction temperature	For commercial use	0	85	°C
		For industrial use	-40	100	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

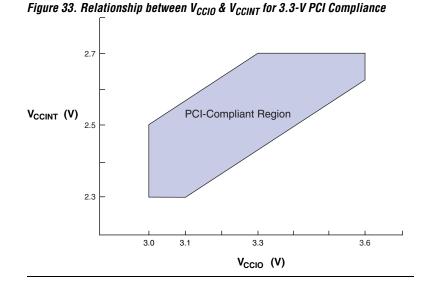
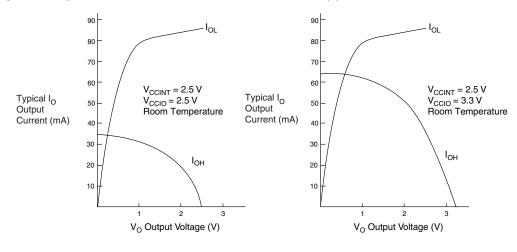
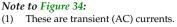




Figure 34 shows the typical output drive characteristics of APEX 20K devices with 3.3-V and 2.5-V V_{CCIO}. The output driver is compatible with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). 5-V tolerant APEX 20K devices in the -1 speed grade are 5-V PCI compliant over all operating conditions.

Altera Corporation

All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength.

Figure 36 shows the f_{MAX} timing model for APEX 20K devices.

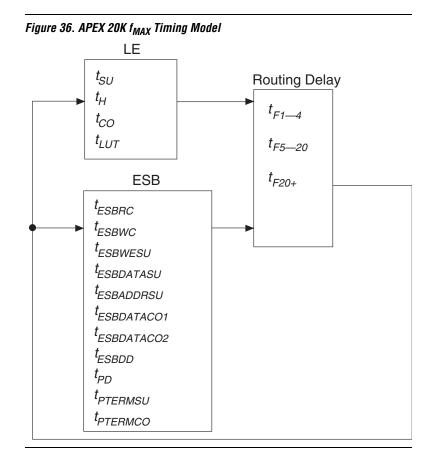


Figure 37 shows the f_{MAX} timing model for APEX 20KE devices. These parameters can be used to estimate f_{MAX} for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information.

Note to Tables 32 and 33:

(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model.

Table 34. APL	Table 34. APEX 20KE LE Timing Microparameters							
Symbol	Parameter							
t _{SU}	LE register setup time before clock							
t _H	LE register hold time after clock							
t _{CO}	LE register clock-to-output delay							
t _{LUT}	LUT delay for data-in to data-out							

Table 35. APE	X 20KE ESB Timing Microparameters
Symbol	Parameter
t _{ESBARC}	ESB Asynchronous read cycle time
t _{ESBSRC}	ESB Synchronous read cycle time
t _{ESBAWC}	ESB Asynchronous write cycle time
t _{ESBSWC}	ESB Synchronous write cycle time
t _{ESBWASU}	ESB write address setup time with respect to WE
t _{ESBWAH}	ESB write address hold time with respect to WE
t _{ESBWDSU}	ESB data setup time with respect to WE
t _{ESBWDH}	ESB data hold time with respect to WE
t _{ESBRASU}	ESB read address setup time with respect to RE
t _{ESBRAH}	ESB read address hold time with respect to RE
t _{ESBWESU}	ESB WE setup time before clock when using input register
t _{ESBWEH}	ESB WE hold time after clock when using input register
t _{ESBDATASU}	ESB data setup time before clock when using input register
t _{ESBDATAH}	ESB data hold time after clock when using input register
^t ESBWADDRSU	ESB write address setup time before clock when using input registers
t _{ESBRADDRSU}	ESB read address setup time before clock when using input registers
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers
t _{ESBDATACO2}	ESB clock-to-output delay without output registers
t _{ESBDD}	ESB data-in to data-out delay for RAM mode
t _{PD}	ESB Macrocell input to non-registered output
t _{PTERMSU}	ESB Macrocell register setup time before clock
t _{PTERMCO}	ESB Macrocell register clock-to-output delay

Symbol	-1			-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.83		2.57		3.79	ns
t _{ESBSRC}		2.46		3.26		4.61	ns
t _{ESBAWC}		3.50		4.90		7.23	ns
t _{ESBSWC}		3.77		4.90		6.79	ns
t _{ESBWASU}	1.59		2.23		3.29		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.75		2.46		3.62		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.76		2.47		3.64		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.68		2.49		3.87		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.08		0.43		1.04		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.29		0.72		1.46		ns
t _{ESBRADDRSU}	0.36		0.81		1.58		ns
t _{ESBDATACO1}		1.06		1.24		1.55	ns
t _{ESBDATACO2}		2.39		3.35		4.94	ns
t _{ESBDD}		3.50		4.90		7.23	ns
t _{PD}		1.72		2.41		3.56	ns
t _{PTERMSU}	0.99		1.56		2.55		ns
t _{PTERMCO}		1.07		1.26		1.08	ns

Symbol	-	1	-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.65		2.02		2.11	ns
t _{ESBSRC}		2.21		2.70		3.11	ns
t _{ESBAWC}		3.04		3.79		4.42	ns
t _{ESBSWC}		2.81		3.56		4.10	ns
t _{ESBWASU}	0.54		0.66		0.73		ns
t _{ESBWAH}	0.36		0.45		0.47		ns
t _{ESBWDSU}	0.68		0.81		0.94		ns
t _{ESBWDH}	0.36		0.45		0.47		ns
t _{ESBRASU}	1.58		1.87		2.06		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.41		1.71		2.00		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.02		-0.03		0.09		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.14		0.17		0.35		ns
t _{ESBRADDRSU}	0.21		0.27		0.43		ns
t _{ESBDATACO1}		1.04		1.30		1.46	ns
t _{ESBDATACO2}		2.15		2.70		3.16	ns
t _{ESBDD}		2.69		3.35		3.97	ns
t _{PD}		1.55		1.93		2.29	ns
t _{PTERMSU}	1.01		1.23		1.52		ns
t _{PTERMCO}		1.06		1.32		1.04	ns

Symbol	-1	l	-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.36		2.44		2.65		ns
t _{CL}	1.36		2.44		2.65		ns
t _{CLRP}	0.18		0.19		0.21		ns
t _{PREP}	0.18		0.19		0.21		ns
t _{ESBCH}	1.36		2.44		2.65		ns
t _{ESBCL}	1.36		2.44		2.65		ns
t _{ESBWP}	1.18		1.48		1.76		ns
t _{ESBRP}	0.95		1.17		1.41		ns

Table 77. EP20K200E External Timing Parameters												
Symbol	-	-1		-2		-3						
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.24		2.35		2.47		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	5.12	2.00	5.62	2.00	6.11	ns					
t _{INSUPLL}	2.13		2.07		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	3.01	0.50	3.36	-	-	ns					

Tables 85 through 90 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K400E APEX 20KE devices.

Table 85. EP2	Table 85. EP20K400E f _{MAX} LE Timing Microparameters												
Symbol	-1 Spee	-1 Speed Grade		ed Grade	-3 Spee	d Grade	Unit						
	Min	Max	Min	Max	Min	Max							
t _{SU}	0.23		0.23		0.23		ns						
t _H	0.23		0.23		0.23		ns						
t _{CO}		0.25		0.29		0.32	ns						
t _{LUT}		0.70		0.83		1.01	ns						

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	2.93		3.23		3.44		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	5.25	2.00	5.79	2.00	6.32	ns
t _{xzbidir}		5.95		6.77		7.12	ns
t _{zxbidir}		5.95		6.77		7.12	ns
t _{insubidirpll}	4.31		4.76		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
t _{outcobidirpll}	0.50	2.25	0.50	2.45	-	-	ns
t _{xzbidirpll}		2.94		3.43		-	ns
t _{zxbidirpll}		2.94		3.43		-	ns

Tables 91 through 96 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K600E APEX 20KE devices.

Table 91. EP20K600E f _{MAX} LE Timing Microparameters												
Symbol	-1 Spee	d Grade	le -2 Speed (ed Grade -3 Spee		Unit					
	Min	Max	Min	Max	Min	Max						
t _{SU}	0.16		0.16		0.17		ns					
t _H	0.29		0.33		0.37		ns					
t _{CO}		0.65		0.38		0.49	ns					
t _{LUT}		0.70		1.00		1.30	ns					

Т

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	1
t _{ESBARC}		1.67		2.39		3.11	ns
t _{ESBSRC}		2.27		3.07		3.86	ns
t _{ESBAWC}		3.19		4.56		5.93	ns
t _{ESBSWC}		3.51		4.62		5.72	ns
t _{ESBWASU}	1.46		2.08		2.70		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.60		2.29		2.97		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.61		2.30		2.99		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.49		2.30		3.11		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.01		0.35		0.71		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.19		0.62		1.06		ns
t _{ESBRADDRSU}	0.25		0.71		1.17		ns
t _{ESBDATACO1}		1.01		1.19		1.37	ns
t _{ESBDATACO2}		2.18		3.12		4.05	ns
t _{ESBDD}		3.19		4.56		5.93	ns
t _{PD}		1.57		2.25		2.92	ns
t _{PTERMSU}	0.85		1.43		2.01		ns
t _{PTERMCO}		1.03		1.21		1.39	ns

Table 93. EP20K600E f _{MAX} Routing Delays												
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit					
	Min	Max	Min	Max	Min	Мах						
t _{F1-4}		0.22		0.25		0.26	ns					
t _{F5-20}		1.26		1.39		1.52	ns					
t _{F20+}		3.51		3.88		4.26	ns					