E·XFL

Intel - EP20K100TC144-3N Datasheet

Welcome to E-XFL.COM

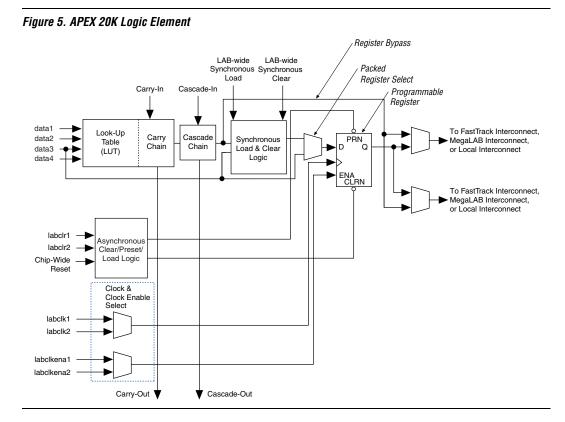
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Deta	i	I	s	


Details	
Product Status	Obsolete
Number of LABs/CLBs	416
Number of Logic Elements/Cells	4160
Total RAM Bits	53248
Number of I/O	101
Number of Gates	263000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k100tc144-3n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Element

The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5.

Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE.

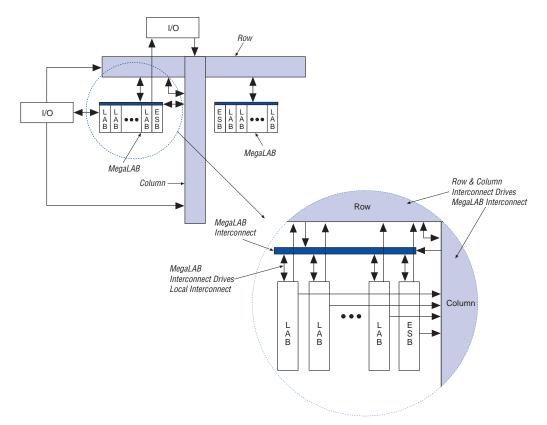
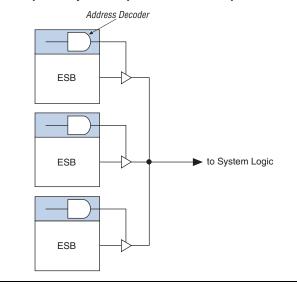
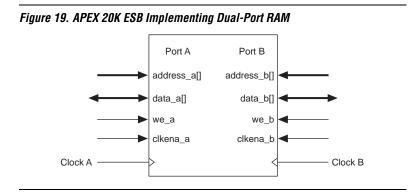
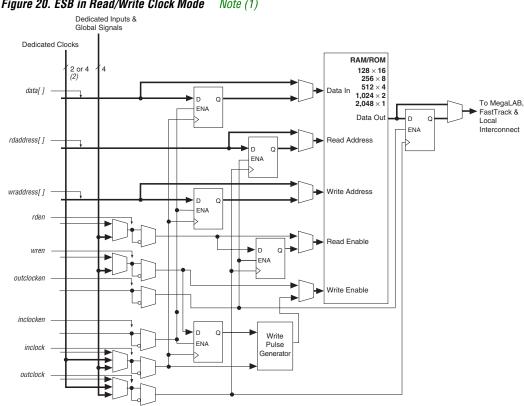


Figure 10. FastTrack Connection to Local Interconnect


Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

Read/Write Clock Mode

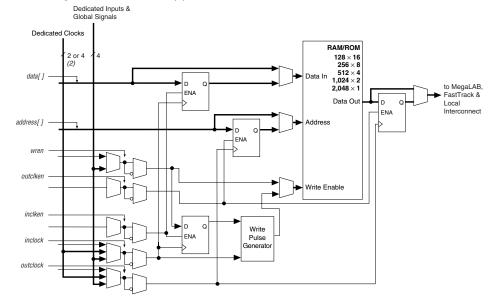

The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode.

Figure 20. ESB in Read/Write Clock Mode Note (1)

Notes to Figure 20:

- All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)
- APEX 20KE devices have four dedicated clocks. (2)

Figure 22. ESB in Single-Port Mode Note (1)

Notes to Figure 22:

All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset.
 APEX 20KE devices have four dedicated clocks.

Content-Addressable Memory

In APEX 20KE devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it.

CAM is used for high-speed search operations. When searching for data within a RAM block, the search is performed serially. Thus, finding a particular data word can take many cycles. CAM searches all addresses in parallel and outputs the address storing a particular word. When a match is found, a match flag is set high. Figure 23 shows the CAM block diagram.

Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out.

MultiVolt I/O Interface

The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems.

Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support						
V _{CCIO} (V)	Ir	put Signals	(V)	Outp	ut Signals	(V)
-	2.5	3.3	5.0	2.5	3.3	5.0
2.5	\checkmark	√(1)	√ (1)	 ✓ 		
3.3	\checkmark	\checkmark	√ (1)	√ (2)	\checkmark	 Image: A start of the start of

Table 12 summarizes 5.0-V tolerant APEX 20K MultiVolt I/O support.

Notes to Table 12:

- The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}.
- (2) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs.

Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pullup resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pullup resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor. APEX 20KE devices also support the MultiVolt I/O interface feature. The APEX 20KE VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels are sometime with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KE device is 5.0-V tolerant with the addition of a resistor.

Table 13 summarizes APEX 20KE MultiVolt I/O support.

Table 13. /	APEX 20KE I	MultiVolt I/O	Support /	Vote (1)				
V _{CCIO} (V)	V _{CCIO} (V) Input Signals (V) Output Signals (V)							
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0
1.8	>	\checkmark	>		\checkmark			
2.5	\checkmark	\checkmark	\checkmark			 Image: A start of the start of		
3.3	~	\checkmark	>	(2)			√ (3)	

Notes to Table 13:

 The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.

(2) An APEX 20KE device can be made 5.0-V tolerant with the addition of an external resistor. You also need a PCI clamp and series resistor.

(3) When V_{CCIO} = 3.3 V, an APEX 20KE device can drive a 2.5-V device with 3.3-V tolerant inputs.

ClockLock & ClockBoost Features

APEX 20K devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20K devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20K device's high-speed clock to provide significant improvements in system performance and band-width. Devices with an X-suffix on the ordering code include the ClockLock circuit.

The ClockLock and ClockBoost features in APEX 20K devices are enabled through the Quartus II software. External devices are not required to use these features.

Clock Phase & Delay Adjustment

The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices.

Symbol	Parameter	Min	Max	Unit
t _{SKEW}	Skew delay between related ClockLock/ClockBoost-generated clocks		500	ps
JITTER	Jitter on ClockLock/ClockBoost-generated clock (5)		200	ps
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps

Notes to Table 15:

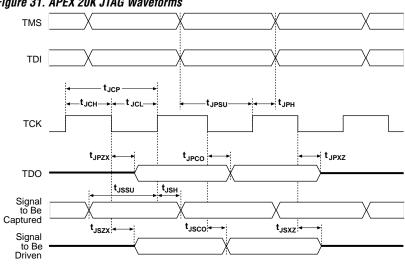
- (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz.
- (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time.
- (4) The jitter specification is measured under long-term observation.
- (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps.

Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices.

Symbol	Parameter	Min	Max	Unit
f _{out}	Output frequency	25	170	MHz
f _{CLK1}	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	170	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	80	MHz
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	34	MHz
t _{OUTDUTY}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1)		25,000 (2)	PPM
t _R	Input rise time		5	ns
t _F	Input fall time		5	ns
t _{LOCK}	Time required for ClockLock/ ClockBoost to acquire lock (3)		10	μs
t _{SKEW}	Skew delay between related ClockLock/ ClockBoost- generated clock	500	500	ps
t _{JITTER}	Jitter on ClockLock/ ClockBoost-generated clock (4)		200	ps
t _{INCLKSTB}	Input clock stability (measured between adjacent clocks)		50	ps

Table 16. APEX 20K ClockLock & ClockBoost Parameters for -2 Speed Grade Devices

Device	IDCODE (32 Bits) (1)						
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	1 (1 Bit) (2)			
EP20K30E	0000	1000 0000 0011 0000	000 0110 1110	1			
EP20K60E	0000	1000 0000 0110 0000	000 0110 1110	1			
EP20K100	0000	0000 0100 0001 0110	000 0110 1110	1			
EP20K100E	0000	1000 0001 0000 0000	000 0110 1110	1			
EP20K160E	0000	1000 0001 0110 0000	000 0110 1110	1			
EP20K200	0000	0000 1000 0011 0010	000 0110 1110	1			
EP20K200E	0000	1000 0010 0000 0000	000 0110 1110	1			
EP20K300E	0000	1000 0011 0000 0000	000 0110 1110	1			
EP20K400	0000	0001 0110 0110 0100	000 0110 1110	1			
EP20K400E	0000	1000 0100 0000 0000	000 0110 1110	1			
EP20K600E	0000	1000 0110 0000 0000	000 0110 1110	1			
EP20K1000E	0000	1001 0000 0000 0000	000 0110 1110	1			


11- 04 00 04 4 ~

Notes to Table 21:

The most significant bit (MSB) is on the left. (1)

(2) The IDCODE's least significant bit (LSB) is always 1.

Figure 31 shows the timing requirements for the JTAG signals.

Altera Corporation

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (11)			0.2	V
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)			$0.1 imes V_{CCIO}$	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (11)			0.2	V
	I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (11)			0.4	V	
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (11)			0.7	V
I _I	Input pin leakage current	$V_1 = 5.75$ to -0.5 V	-10		10	μA
I _{OZ}	Tri-stated I/O pin leakage current	V _O = 5.75 to -0.5 V	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V_1 = ground, no load, no toggling inputs, -1 speed grade (12)		10		mA
		V _I = ground, no load, no toggling inputs, -2, -3 speed grades (12)		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (13)	20		50	W
	before and during configuration	V _{CCIO} = 2.375 V (13)	30		80	W

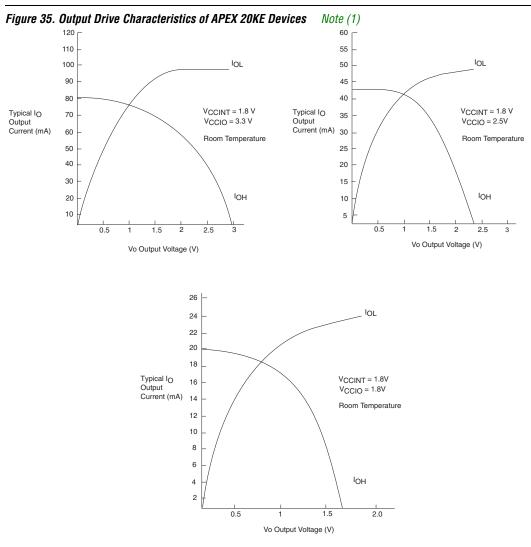
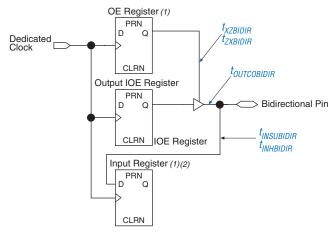



Figure 35 shows the output drive characteristics of APEX 20KE devices.

Note to Figure 35:(1) These are transient (AC) currents.

Timing Model

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Figure 40. Synchronous Bidirectional Pin External Timing

Notes to Figure 40:

- (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software.
- (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells= Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells= ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade.

Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68.

Table 31. APEX 20K f _{MAX} Timing Parameters (Part 1 of 2)			
Symbol	Parameter		
t _{SU}	LE register setup time before clock		
t _H	LE register hold time after clock		
t _{CO}	LE register clock-to-output delay		
t _{LUT}	LUT delay for data-in		
t _{ESBRC}	ESB Asynchronous read cycle time		
t _{ESBWC}	ESB Asynchronous write cycle time		
t _{ESBWESU}	ESB WE setup time before clock when using input register		
t _{ESBDATASU}	ESB data setup time before clock when using input register		
t _{ESBDATAH}	ESB data hold time after clock when using input register		
t _{ESBADDRSU}	ESB address setup time before clock when using input registers		
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers		

Table 36. APEX 20KE Routing Timing Microparameters Note (1)				
Symbol	Symbol Parameter			
t _{F1-4}	Fanout delay using Local Interconnect			
t _{F5-20}	Fanout delay estimate using MegaLab Interconnect			
t _{F20+}	Fanout delay estimate using FastTrack Interconnect			

Note to Table 36:

 These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

Table 37. APEX 20KE Functional Timing Microparameters			
Symbol	Parameter		
ТСН	Minimum clock high time from clock pin		
TCL	Minimum clock low time from clock pin		
TCLRP	LE clear Pulse Width		
TPREP	LE preset pulse width		
TESBCH	Clock high time for ESB		
TESBCL	Clock low time for ESB		
TESBWP	Write pulse width		
TESBRP	Read pulse width		

Table 37. APEX 20KE Functional Timing Microparameters

Tables 38 and 39 describe the APEX 20KE external timing parameters.

Table 38. APEX 20KE External Timing Parameters Note (1)				
Symbol	Clock Parameter	Conditions		
t _{INSU}	Setup time with global clock at IOE input register			
t _{INH}	Hold time with global clock at IOE input register			
t _{оитсо}	Clock-to-output delay with global clock at IOE output register C1 = 10			
t _{INSUPLL}	Setup time with PLL clock at IOE input register			
t _{INHPLL}	Hold time with PLL clock at IOE input register			
t _{OUTCOPLL}	Clock-to-output delay with PLL clock at IOE output register	C1 = 10 pF		

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	d Grade	Units
					_		-
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.1		0.3		0.6		ns
t _H	0.5		0.8		0.9		ns
t _{CO}		0.1		0.4		0.6	ns
t _{LUT}		1.0		1.2		1.4	ns
t _{ESBRC}		1.7		2.1		2.4	ns
t _{ESBWC}		5.7		6.9		8.1	ns
t _{ESBWESU}	3.3		3.9		4.6		ns
t _{ESBDATASU}	2.2		2.7		3.1		ns
t _{ESBDATAH}	0.6		0.8		0.9		ns
t _{ESBADDRSU}	2.4		2.9		3.3		ns
t _{ESBDATACO1}		1.3		1.6		1.8	ns
t _{ESBDATACO2}		2.5		3.1		3.6	ns
t _{ESBDD}		2.5		3.3		3.6	ns
t _{PD}		2.5		3.1		3.6	ns
t _{PTERMSU}	1.7		2.1		2.4		ns
t _{PTERMCO}		1.0		1.2		1.4	ns
t _{F1-4}		0.4		0.5		0.6	ns
t _{F5-20}		2.6		2.8		2.9	ns
t _{F20+}		3.7		3.8		3.9	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns
t _{CLRP}	0.5		0.6		0.8		ns
t _{PREP}	0.5		0.5		0.5		ns
t _{ESBCH}	2.0		2.5		3.0		ns
t _{ESBCL}	2.0		2.5		3.0		ns
t _{ESBWP}	1.5		1.9		2.2		ns
t _{ESBRP}	1.0		1.2		1.4		ns

Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Мах		
t _{INSU} (1)	2.3		2.8		3.2		ns	
t _{INH} (1)	0.0		0.0		0.0		ns	
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns	
t _{INSU} (2)	1.1		1.2		-		ns	
t _{INH} (2)	0.0		0.0		-		ns	
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	_	4.8	ns	

Table 44. EP20K	100 External	Bidirectional	Timing Paran	neters			
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
toutcobidir (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns
t _{insubidir} (2)	1.0		1.2		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
toutcobidir (2)	0.5	2.7	0.5	3.1	-	-	ns
t _{XZBIDIR} (2)		4.3		5.0		-	ns
t _{ZXBIDIR} (2)		4.3		5.0		-	ns

Table 45. EP20	K200 External	l Timing Para	meters				
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Мах	Min	Max	
t _{INSU} (1)	1.9		2.3		2.6		ns
t _{INH} (1)	0.0		0.0		0.0		ns
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns
t _{INSU} (2)	1.1		1.2		-		ns
t _{INH} (2)	0.0		0.0		-		ns
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns

Symbol	-	1	-	2	-	3	Unit
-	Min	Max	Min	Max	Min	Max	
t _{insubidir}	2.77		2.91		3.11		ns
t _{inhbidir}	0.00		0.00		0.00		ns
toutcobidir	2.00	4.84	2.00	5.31	2.00	5.81	ns
t _{XZBIDIR}		6.47		7.44		8.65	ns
t _{ZXBIDIR}		6.47		7.44		8.65	ns
t _{insubidirpll}	3.44		3.24		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	3.37	0.50	3.69	-	-	ns
t _{xzbidirpll}		5.00		5.82		-	ns
t _{zxbidirpll}		5.00		5.82		-	ns

Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices.

Table 61. EP2	OK100E f _{max} i	LE Timing Mic	roparameters	8			
Symbol	-	·1		2	-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.25		0.25		0.25		ns
t _H	0.25		0.25		0.25		ns
t _{CO}		0.28		0.28		0.34	ns
t _{LUT}		0.80		0.95		1.13	ns

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit
	Min	Мах	Min	Max	Min	Max	
t _{ESBARC}		1.67		1.91		1.99	ns
t _{ESBSRC}		2.30		2.66		2.93	ns
t _{ESBAWC}		3.09		3.58		3.99	ns
t _{ESBSWC}		3.01		3.65		4.05	ns
t _{ESBWASU}	0.54		0.63		0.65		ns
t _{ESBWAH}	0.36		0.43		0.42		ns
t _{ESBWDSU}	0.69		0.77		0.84		ns
t _{ESBWDH}	0.36		0.43		0.42		ns
t _{ESBRASU}	1.61		1.77		1.86		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.35		1.47		1.61		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.18		-0.30		-0.27		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	-0.02		-0.11		-0.03		ns
t _{ESBRADDRSU}	0.06		-0.01		-0.05		ns
t _{ESBDATACO1}		1.16		1.40		1.54	ns
t _{ESBDATACO2}		2.18		2.55		2.85	ns
t _{ESBDD}		2.73		3.17		3.58	ns
t _{PD}		1.57		1.83		2.07	ns
t _{PTERMSU}	0.92		0.99		1.18		ns
t _{PTERMCO}		1.18		1.43		1.17	ns

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	2.00		2.50		2.75		ns	
t _{CL}	2.00		2.50		2.75		ns	
t _{CLRP}	0.18		0.26		0.34		ns	
t _{PREP}	0.18		0.26		0.34		ns	
t _{ESBCH}	2.00		2.50		2.75		ns	
t _{ESBCL}	2.00		2.50		2.75		ns	
t _{ESBWP}	1.17		1.68		2.18		ns	
t _{ESBRP}	0.95		1.35		1.76		ns	

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{INSU}	2.74		2.74		2.87		ns	
t _{INH}	0.00		0.00		0.00		ns	
toutco	2.00	5.51	2.00	6.06	2.00	6.61	ns	
tINSUPLL	1.86		1.96		-		ns	
t _{INHPLL}	0.00		0.00		-		ns	
toutcopll	0.50	2.62	0.50	2.91	-	-	ns	

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	0.64		0.98		1.08		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	5.51	2.00	6.06	2.00	6.61	ns
t _{xzbidir}		6.10		6.74		7.10	ns
t _{zxbidir}		6.10		6.74		7.10	ns
t _{insubidirpll}	2.26		2.68		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.62	0.50	2.91	-	-	ns
t _{xzbidirpll}		3.21		3.59		-	ns
t _{ZXBIDIRPLL}		3.21		3.59		-	ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	3.22		3.33		3.51		ns
t _{inhbidir}	0.00		0.00		0.00		ns
toutcobidir	2.00	5.75	2.00	6.33	2.00	6.90	ns
t _{xzbidir}		6.31		7.09		7.76	ns
t _{ZXBIDIR}		6.31		7.09		7.76	ns
t _{insubidirpl} L	3.25		3.26				ns
t _{inhbidirpll}	0.00		0.00				ns
toutcobidirpll	0.50	2.25	0.50	2.99			ns
t _{xzbidirpll}		2.81		3.80			ns
t _{zxbidirpll}		2.81		3.80			ns

Tables 103 through 108 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1500E APEX 20KE devices.

Table 103. EP20K1500E f _{MAX} LE Timing Microparameters									
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	d Grade	Unit		
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.25		0.25		0.25		ns		
t _H	0.25		0.25		0.25		ns		
t _{co}		0.28		0.32		0.33	ns		
t _{LUT}		0.80		0.95		1.13	ns		

Т