E·XFL

Intel - EP20K160EBC356-1N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	640
Number of Logic Elements/Cells	6400
Total RAM Bits	81920
Number of I/O	271
Number of Gates	404000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k160ebc356-1n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II software Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used.

Counter Mode

The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs.

Table 9. APEX 20K Routing Scheme									
Source		Destination							
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect
Row I/O Pin					✓	~	~	~	
Column I/O Pin								~	✓ (1)
LE					~	~	~	~	
ESB					 Image: A set of the set of the	~	~	~	
Local Interconnect	~	~	~	~					
MegaLAB Interconnect					~				
Row FastTrack Interconnect						~		~	
Column FastTrack Interconnect						~	~		
FastRow Interconnect					✓ (1)				

Note to Table 9:

(1) This connection is supported in APEX 20KE devices only.

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's selftimed RAM must only meet the setup and hold time specifications of the global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays.

To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18.

Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

Read/Write Clock Mode

The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode.

Notes to Figure 20:

- (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.
- (2) APEX 20KE devices have four dedicated clocks.

APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains						
Programmable Delays	Quartus II Logic Option					
Input Pin to Core Delay	Decrease input delay to internal cells					
Input Pin to Input Register Delay	Decrease input delay to input registers					
Core to Output Register Delay	Decrease input delay to output register					
Output Register t_{CO} Delay	Increase delay to output pin					
Clock Enable Delay	Increase clock enable delay					

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

Note to Figure 30:

(1) The tI parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 1 of 2)						
Symbol Parameter		Min	Max	Unit		
f _{OUT}	Output frequency	25	180	MHz		
f _{CLK1} <i>(1)</i>	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	180 (1)	MHz		
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	90	MHz		
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	48	MHz		
t _{outduty}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%		
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2)		25,000 (3)	PPM		
t _R	Input rise time		5	ns		
t _F	Input fall time		5	ns		
t _{LOCK}	Time required for ClockLock/ClockBoost to acquire lock (4)		10	μs		

٦

Table 22 shows the JTAG timing parameters and values for APEX 20K devices.

10010 2				
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

Table 22. APEX 20K JTAG Timing Parameters & Values

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- Jam Programming & Test Language Specification

Generic Testing

Each APEX 20K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20K devices are made under conditions equivalent to those shown in Figure 32. Multiple test patterns can be used to configure devices during all stages of the production flow.

P

For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).*

Table 30. APEX 20KE Device Capacitance Note (15)						
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF	
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF	

Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin	Max. Duty Cycle
4.0V	100% (DC)
4.1	90%

- 4.2 50%
- 4.3 30%
- 4.4 17%
- 4.5 10%
- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (7) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between $\rm V_{CCIO}$ and $\rm V_{CCINT}$ for 3.3-V PCI compliance on APEX 20K devices.

Figure 35 shows the output drive characteristics of APEX 20KE devices.

Note to Figure 35:(1) These are transient (AC) currents.

Timing Model

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2)					
Symbol	Parameter				
t _{ESBDATACO2}	ESB clock-to-output delay without output registers				
t _{ESBDD}	ESB data-in to data-out delay for RAM mode				
t _{PD}	ESB macrocell input to non-registered output				
t _{PTERMSU}	ESB macrocell register setup time before clock				
t _{PTERMCO}	ESB macrocell register clock-to-output delay				
t _{F1-4}	Fanout delay using local interconnect				
t _{F5-20}	Fanout delay using MegaLab Interconnect				
t _{F20+}	Fanout delay using FastTrack Interconnect				
t _{CH}	Minimum clock high time from clock pin				
t _{CL}	Minimum clock low time from clock pin				
t _{CLRP}	LE clear pulse width				
t _{PREP}	LE preset pulse width				
t _{ESBCH}	Clock high time				
t _{ESBCL}	Clock low time				
t _{ESBWP}	Write pulse width				
t _{ESBRP}	Read pulse width				

Tables 32 and 33 describe APEX 20K external timing parameters.

Table 32. APEX 20K External Timing Parameters Note (1)				
Symbol	Clock Parameter			
t _{INSU}	Setup time with global clock at IOE register			
t _{INH}	Hold time with global clock at IOE register			
t _{оитсо}	Clock-to-output delay with global clock at IOE register			

Table 33. APEX 20K External Bidirectional Timing Parameters Note (1)					
Symbol	Conditions				
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at same-row or same- column LE register				
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same-column LE register				
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 10 pF			
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 10 pF			
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate = off	C1 = 10 pF			

Table 39. APEX 20KE External Bidirectional Timing Parameters Note (1)				
Symbol	Parameter	Conditions		
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at LAB adjacent Input Register			
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at LAB adjacent Input Register			
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE output register	C1 = 10 pF		
t _{XZBIDIR}	Synchronous Output Enable Register to output buffer disable delay	C1 = 10 pF		
t _{ZXBIDIR}	Synchronous Output Enable Register output buffer enable delay	C1 = 10 pF		
t _{INSUBIDIRPLL}	Setup time for bidirectional pins with PLL clock at LAB adjacent Input Register			
t _{INHBIDIRPLL}	Hold time for bidirectional pins with PLL clock at LAB adjacent Input Register			
^t OUTCOBIDIRPLL	Clock-to-output delay for bidirectional pins with PLL clock at IOE output register	C1 = 10 pF		
t _{XZBIDIRPLL}	Synchronous Output Enable Register to output buffer disable delay with PLL	C1 = 10 pF		
t _{ZXBIDIRPLL}	Synchronous Output Enable Register output buffer enable delay with PLL	C1 = 10 pF		

Note to Tables 38 and 39:

Г

(1) These timing parameters are sample-tested only.

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.1		0.3		0.6		ns
t _H	0.5		0.8		0.9		ns
t _{CO}		0.1		0.4		0.6	ns
t _{LUT}		1.0		1.2		1.4	ns
t _{ESBRC}		1.7		2.1		2.4	ns
t _{ESBWC}		5.7		6.9		8.1	ns
t _{ESBWESU}	3.3		3.9		4.6		ns
t _{ESBDATASU}	2.2		2.7		3.1		ns
t _{ESBDATAH}	0.6		0.8		0.9		ns
t _{ESBADDRSU}	2.4		2.9		3.3		ns
t _{ESBDATACO1}		1.3		1.6		1.8	ns
t _{ESBDATACO2}		2.5		3.1		3.6	ns
t _{ESBDD}		2.5		3.3		3.6	ns
t _{PD}		2.5		3.1		3.6	ns
t _{PTERMSU}	1.7		2.1		2.4		ns
t _{PTERMCO}		1.0		1.2		1.4	ns
t _{F1-4}		0.4		0.5		0.6	ns
t _{F5-20}		2.6		2.8		2.9	ns
t _{F20+}		3.7		3.8		3.9	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns
t _{CLRP}	0.5		0.6		0.8		ns
t _{PREP}	0.5		0.5		0.5		ns
t _{ESBCH}	2.0		2.5		3.0		ns
t _{ESBCL}	2.0		2.5		3.0		ns
t _{ESBWP}	1.5		1.9		2.2		ns
t _{ESBRP}	1.0		1.2		1.4		ns

Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Table 43. EP20	Table 43. EP20K100 External Timing Parameters											
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		d Grade	Unit					
	Min	Мах	Min	Max	Min	Max						
t _{INSU} (1)	2.3		2.8		3.2		ns					
t _{INH} (1)	0.0		0.0		0.0		ns					
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns					
t _{INSU} (2)	1.1		1.2		-		ns					
t _{INH} (2)	0.0		0.0		-		ns					
t _{OUTCO} (2)	0.5	2.7	0.5	3.1	_	4.8	ns					

Table 44. EP20k	Table 44. EP20K100 External Bidirectional Timing Parameters										
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade					
	Min	Мах	Min	Max	Min	Max	1				
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns				
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns				
t _{OUTCOBIDIR}	2.0	4.5	2.0	4.9	2.0	6.6	ns				
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns				
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns				
t _{INSUBIDIR} (2)	1.0		1.2		-		ns				
t _{inhbidir} (2)	0.0		0.0		-		ns				
toutcobidir <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns				
t _{XZBIDIR} (2)		4.3		5.0		-	ns				
t _{ZXBIDIR} (2)		4.3		5.0		-	ns				

Table 45. EP20K200 External Timing Parameters											
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade					
	Min	Max	Min	Мах	Min	Мах					
t _{INSU} (1)	1.9		2.3		2.6		ns				
t _{INH} (1)	0.0		0.0		0.0		ns				
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns				
t _{INSU} (2)	1.1		1.2		-		ns				
t _{INH} (2)	0.0		0.0		-		ns				
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns				

Notes to Tables 43 through 48:

- (1) This parameter is measured without using ClockLock or ClockBoost circuits.
- (2) This parameter is measured using ClockLock or ClockBoost circuits.

Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices.

Table 49. EP20K30E f _{MAX} LE Timing Microparameters											
Symbol	mbol -1 -2 -3		-3		Unit						
	Min	Max	Min	Max	Min	Max					
t _{SU}	0.01		0.02		0.02		ns				
t _H	0.11		0.16		0.23		ns				
t _{CO}		0.32		0.45		0.67	ns				
t _{LUT}		0.85		1.20		1.77	ns				

Table 50. EP20k	(30E f _{MAX} ESB	Timing Micro	parameters				
Symbol		-1		-2	-	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		2.03		2.86		4.24	ns
t _{ESBSRC}		2.58		3.49		5.02	ns
t _{ESBAWC}		3.88		5.45		8.08	ns
t _{ESBSWC}		4.08		5.35		7.48	ns
t _{ESBWASU}	1.77		2.49		3.68		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.95		2.74		4.05		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.96		2.75		4.07		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.80		2.73		4.28		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.07		0.48		1.17		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.30		0.80		1.64		ns
t _{ESBRADDRSU}	0.37		0.90		1.78		ns
t _{ESBDATACO1}		1.11		1.32		1.67	ns
t _{ESBDATACO2}		2.65		3.73		5.53	ns
t _{ESBDD}		3.88		5.45		8.08	ns
t _{PD}		1.91		2.69		3.98	ns
t _{PTERMSU}	1.04		1.71		2.82		ns
t _{PTERMCO}		1.13		1.34		1.69	ns

Table 51. EP20K30E f_{MAX} Routing Delays

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.27		0.31	ns
t _{F5-20}		1.03		1.14		1.30	ns
t _{F20+}		1.42		1.54		1.77	ns

Table 69. EP20K160E f _{MAX} Routing Delays										
Symbol	-1		-2		-3		Unit			
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.25		0.26		0.28	ns			
t _{F5-20}		1.00		1.18		1.35	ns			
t _{F20+}		1.95		2.19		2.30	ns			

Symbol	-	1	-	2	-3	1	Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.34		1.43		1.55		ns
t _{CL}	1.34		1.43		1.55		ns
t _{CLRP}	0.18		0.19		0.21		ns
t _{PREP}	0.18		0.19		0.21		ns
t _{ESBCH}	1.34		1.43		1.55		ns
t _{ESBCL}	1.34		1.43		1.55		ns
t _{ESBWP}	1.15		1.45		1.73		ns
t _{ESBRP}	0.93		1.15		1.38		ns

Table 71. EP20K160E External Timing Parameters											
Symbol	-1		-2		-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{INSU}	2.23		2.34		2.47		ns				
t _{INH}	0.00		0.00		0.00		ns				
t _{outco}	2.00	5.07	2.00	5.59	2.00	6.13	ns				
t _{insupll}	2.12		2.07		-		ns				
t _{INHPLL}	0.00		0.00		-		ns				
t _{outcopll}	0.50	3.00	0.50	3.35	-	-	ns				

APEX 20K Programmable Logic Device Family Data Sheet

Table 99. EP20K1000E f _{MAX} Routing Delays										
Symbol	-1 Spe	ed Grade	-2 Spe	-2 Speed Grade		d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.27		0.27		0.27	ns			
t _{F5-20}		1.45		1.63		1.75	ns			
t _{F20+}		4.15		4.33		4.97	ns			

Table 100. El	Table 100. EP20K1000E Minimum Pulse Width Timing Parameters									
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		l Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{CH}	1.25		1.43		1.67		ns			
t _{CL}	1.25		1.43		1.67		ns			
t _{CLRP}	0.20		0.20		0.20		ns			
t _{PREP}	0.20		0.20		0.20		ns			
t _{ESBCH}	1.25		1.43		1.67		ns			
t _{ESBCL}	1.25		1.43		1.67		ns			
t _{ESBWP}	1.28		1.51		1.65		ns			
t _{ESBRP}	1.11		1.29		1.41		ns			

Table 101. EF	Table 101. EP20K1000E External Timing Parameters											
Symbol	-1 Speed Grade		-2 Spec	-2 Speed Grade		d Grade	Unit					
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.70		2.84		2.97		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	5.75	2.00	6.33	2.00	6.90	ns					
t _{INSUPLL}	1.64		2.09		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	2.25	0.50	2.99	-	-	ns					

Table 104. EP20K1500E f _{MAX} ESB Timing Microparameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	1	
t _{ESBARC}		1.78		2.02		1.95	ns	
t _{ESBSRC}		2.52		2.91		3.14	ns	
t _{ESBAWC}		3.52		4.11		4.40	ns	
t _{ESBSWC}		3.23		3.84		4.16	ns	
t _{ESBWASU}	0.62		0.67		0.61		ns	
t _{ESBWAH}	0.41		0.55		0.55		ns	
t _{ESBWDSU}	0.77		0.79		0.81		ns	
t _{ESBWDH}	0.41		0.55		0.55		ns	
t _{ESBRASU}	1.74		1.92		1.85		ns	
t _{ESBRAH}	0.00		0.01		0.23		ns	
t _{ESBWESU}	2.07		2.28		2.41		ns	
t _{ESBWEH}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	0.25		0.27		0.29		ns	
t _{ESBDATAH}	0.13		0.13		0.13		ns	
t _{ESBWADDRSU}	0.11		0.04		0.11		ns	
t _{ESBRADDRSU}	0.14		0.11		0.16		ns	
t _{ESBDATACO1}		1.29		1.50		1.63	ns	
t _{ESBDATACO2}		2.55		2.99		3.22	ns	
t _{ESBDD}		3.12		3.57		3.85	ns	
t _{PD}		1.84		2.13		2.32	ns	
t _{PTERMSU}	1.08		1.19		1.32		ns	
t _{PTERMCO}		1.31		1.53		1.66	ns	

Table 105. EP20K1500E f _{MAX} Routing Delays									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.28		0.28		0.28	ns		
t _{F5-20}		1.36		1.50		1.62	ns		
t _{F20+}		4.43		4.48		5.07	ns		

Table 110. Selectable I/O Standard Output Delays									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max	Min		
LVCMOS		0.00		0.00		0.00	ns		
LVTTL		0.00		0.00		0.00	ns		
2.5 V		0.00		0.09		0.10	ns		
1.8 V		2.49		2.98		3.03	ns		
PCI		-0.03		0.17		0.16	ns		
GTL+		0.75		0.75		0.76	ns		
SSTL-3 Class I		1.39		1.51		1.50	ns		
SSTL-3 Class II		1.11		1.23		1.23	ns		
SSTL-2 Class I		1.35		1.48		1.47	ns		
SSTL-2 Class II		1.00		1.12		1.12	ns		
LVDS		-0.48		-0.48		-0.48	ns		
СТТ		0.00		0.00		0.00	ns		
AGP		0.00		0.00		0.00	ns		

Power Consumption

To estimate device power consumption, use the interactive power calculator on the Altera web site at **http://www.altera.com**.

Configuration & Operation

The APEX 20K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Before and during device configuration, all I/O pins are pulled to $\rm V_{\rm CCIO}$ by a built-in weak pull-up resistor.