E·XFL

Intel - EP20K160EBC356-1X Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	640
Number of Logic Elements/Cells	6400
Total RAM Bits	81920
Number of I/O	271
Number of Gates	404000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k160ebc356-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Additional APEX 20K Device Feature			Note (1)			
Feature	EP20K300E	EP20K400	EP20K400E	EP20K600E	EP20K1000E	EP20K1500E
Maximum system gates	728,000	1,052,000	1,052,000	1,537,000	1,772,000	2,392,000
Typical gates	300,000	400,000	400,000	600,000	1,000,000	1,500,000
LEs	11,520	16,640	16,640	24,320	38,400	51,840
ESBs	72	104	104	152	160	216
Maximum RAM bits	147,456	212,992	212,992	311,296	327,680	442,368
Maximum macrocells	1,152	1,664	1,664	2,432	2,560	3,456
Maximum user I/O pins	408	502	488	588	708	808

Note to Tables 1 and 2:

 The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates.

Additional Features

- Designed for low-power operation
 - 1.8-V and 2.5-V supply voltage (see Table 3)
 - MultiVolt[™] I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
 - ESB offering programmable power-saving mode

Table 3. APEX 20K Supply Voltages						
Feature	De	vice				
	EP20K100 EP20K200 EP20K400	EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E EP20K1500E				
Internal supply voltage (V _{CCINT})	2.5 V	1.8 V				
MultiVolt I/O interface voltage levels (V _{CCIO})	2.5 V, 3.3 V, 5.0 V	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)				

Note to Table 3:

(1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor.

Table 5. APEX 20K FineLine BGA Package Options & I/O Count Notes (1), (2)						
Device	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin	
EP20K30E	93	128				
EP20K60E	93	196				
EP20K100		252				
EP20K100E	93	246				
EP20K160E			316			
EP20K200			382			
EP20K200E			376	376		
EP20K300E				408		
EP20K400				502 (3)		
EP20K400E				488 (3)		
EP20K600E				508 (3)	588	
EP20K1000E				508 (3)	708	
EP20K1500E					808	

Notes to Tables 4 and 5:

г

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

Table 6. APEX 20K QFP, BGA & PGA Package Sizes						
Feature	144-Pin TQFP	208-Pin QFP	240-Pin QFP	356-Pin BGA	652-Pin BGA	655-Pin PGA
Pitch (mm)	0.50	0.50	0.50	1.27	1.27	-
Area (mm ²)	484	924	1,218	1,225	2,025	3,906
$\begin{array}{l} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.4 × 30.4	34.9 × 34.9	35 × 35	45 × 45	62.5 × 62.5

Table 7. APEX 20K FineLine BGA Package Sizes						
Feature	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin	
Pitch (mm)	1.00	1.00	1.00	1.00	1.00	
Area (mm ²)	169	361	529	729	1,089	
$\text{Length} \times \text{Width} \text{ (mm} \times \text{mm)}$	13 × 13	19×19	23 × 23	27 × 27	33 × 33	

1

Functional Description

APEX 20K devices incorporate LUT-based logic, product-term-based logic, and memory into one device. Signal interconnections within APEX 20K devices (as well as to and from device pins) are provided by the FastTrack[®] Interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KE devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards.

The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs ensures that the APEX 20K device can implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. The abundance of ESBs ensures that designers can create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20K device.

APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins.

MegaLAB Structure

APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode

Notes to Figure 21:

All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)APEX 20KE devices have four dedicated clocks. (2)

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Altera Corporation

For more information on APEX 20KE devices and CAM, see *Application* Note 119 (Implementing High-Speed Search Applications with APEX CAM).

Driving Signals to the ESB

ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic.

(1) APEX 20KE devices have four dedicated clocks.

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect.

Clock Phase & Delay Adjustment

The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices.

Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

Note to Figure 30:

(1) The tI parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

Table 15. A	PEX 20K ClockLock & ClockBoost Parameters for -1 3	Speed-Grade	Devices (Part 1 d	of 2)
Symbol	Parameter	Min	Max	Unit
f _{OUT}	Output frequency	25	180	MHz
f _{CLK1} <i>(1)</i>	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	180 (1)	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	90	MHz
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	48	MHz
t _{outduty}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2)		25,000 (3)	PPM
t _R	Input rise time		5	ns
t _F	Input fall time		5	ns
t _{LOCK}	Time required for ClockLock/ClockBoost to acquire lock (4)		10	μs

٦

Table 18. /	Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	I/O Standard	-1X Speed Grade		-2X Speed Grade		Units			
			Min	Max	Min	Max				
f _{IN}	Input clock frequency	3.3-V LVTTL	1.5	290	1.5	257	MHz			
		2.5-V LVTTL	1.5	281	1.5	250	MHz			
		1.8-V LVTTL	1.5	272	1.5	243	MHz			
		GTL+	1.5	303	1.5	261	MHz			
		SSTL-2 Class I	1.5	291	1.5	253	MHz			
		SSTL-2 Class II	1.5	291	1.5	253	MHz			
		SSTL-3 Class I	1.5	300	1.5	260	MHz			
		SSTL-3 Class II	1.5	300	1.5	260	MHz			
		LVDS	1.5	420	1.5	350	MHz			

Notes to Tables 17 and 18:

 All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device.

- (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first.
- (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK_ENA pin goes high in user mode.
- (4) The PLL VCO operating range is 200 MHz ð f_{VCO} ð 840 MHz for LVDS mode.

SignalTap Embedded Logic Analyzer

APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration.

Table 19. APEX 20K JTAG Instructions					
JTAG Instruction	Description				
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer.				
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.				
BYPASS (1)	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.				
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.				
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.				
ICR Instructions	Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster [™] or ByteBlasterMV [™] download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor.				
SignalTap Instructions (1)	Monitors internal device operation with the SignalTap embedded logic analyzer.				

able 19 APFX 20K .ITAG Instruction

Note to Table 19:

(1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions.

The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices.

Table 20. APEX 20K Boundary-Scan Register Length				
Device	Boundary-Scan Register Length			
EP20K30E	420			
EP20K60E	624			
EP20K100	786			
EP20K100E	774			
EP20K160E	984			
EP20K200	1,176			
EP20K200E	1,164			
EP20K300E	1,266			
EP20K400	1,536			
EP20K400E	1,506			
EP20K600E	1,806			
EP20K1000E	2,190			
EP20K1500E	1 (1)			

Note to Table 20:

(1) This device does not support JTAG boundary scan testing.

Table 22 shows the JTAG timing parameters and values for APEX 20K devices.

Symbol	Parameter	Min	Max	Unit		
t _{JCP}	TCK clock period	100		ns		
t _{JCH}	TCK clock high time	50		ns		
t _{JCL}	TCK clock low time	50		ns		
t _{JPSU}	JTAG port setup time	20		ns		
t _{JPH}	JTAG port hold time	45		ns		
t _{JPCO}	JTAG port clock to output		25	ns		
t _{JPZX}	JTAG port high impedance to valid output		25	ns		
t _{JPXZ}	JTAG port valid output to high impedance		25	ns		
t _{JSSU}	Capture register setup time	20		ns		
t _{JSH}	Capture register hold time	45		ns		
t _{JSCO}	Update register clock to output		35	ns		
t _{JSZX}	Update register high impedance to valid output		35	ns		
t _{JSXZ}	Update register valid output to high impedance		35	ns		

Table 22. APEX 20K JTAG Timing Parameters & Values

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- Jam Programming & Test Language Specification

Generic Testing

Each APEX 20K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20K devices are made under conditions equivalent to those shown in Figure 32. Multiple test patterns can be used to configure devices during all stages of the production flow.

Table 2	Table 28. APEX 20KE Device Recommended Operating Conditions							
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CCINT}	Supply voltage for internal logic and input buffers	(3), (4)	1.71 (1.71)	1.89 (1.89)	V			
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(3), (4)	3.00 (3.00)	3.60 (3.60)	V			
	Supply voltage for output buffers, 2.5-V operation	(3), (4)	2.375 (2.375)	2.625 (2.625)	V			
	Supply voltage for output buffers, 1.8-V operation	(3), (4)	1.71 (1.71)	1.89 (1.89)	V			
VI	Input voltage	(5), (6)	-0.5	4.0	V			
Vo	Output voltage		0	V _{CCIO}	V			
TJ	Junction temperature	For commercial use	0	85	°C			
		For industrial use	-40	100	°C			
t _R	Input rise time			40	ns			
t _F	Input fall time			40	ns			

Table 50. EP20k	(30E f _{MAX} ESB	Timing Micro	parameters				
Symbol		-1		-2	-	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		2.03		2.86		4.24	ns
t _{ESBSRC}		2.58		3.49		5.02	ns
t _{ESBAWC}		3.88		5.45		8.08	ns
t _{ESBSWC}		4.08		5.35		7.48	ns
t _{ESBWASU}	1.77		2.49		3.68		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.95		2.74		4.05		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.96		2.75		4.07		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.80		2.73		4.28		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.07		0.48		1.17		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.30		0.80		1.64		ns
t _{ESBRADDRSU}	0.37		0.90		1.78		ns
t _{ESBDATACO1}		1.11		1.32		1.67	ns
t _{ESBDATACO2}		2.65		3.73		5.53	ns
t _{ESBDD}		3.88		5.45		8.08	ns
t _{PD}		1.91		2.69		3.98	ns
t _{PTERMSU}	1.04		1.71		2.82		ns
t _{PTERMCO}		1.13		1.34		1.69	ns

Table 51. EP20K30E f_{MAX} Routing Delays

Symbol	-1		-	-2	-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.27		0.31	ns
t _{F5-20}		1.03		1.14		1.30	ns
t _{F20+}		1.42		1.54		1.77	ns

Table 57. EP20K60E f _{MAX} Routing Delays											
Symbol	Symbol -1			-2		3	Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.24		0.26		0.30	ns				
t _{F5-20}		1.45		1.58		1.79	ns				
t _{F20+}		1.96		2.14		2.45	ns				

Table 58. EP.	Table 58. EP20K60E Minimum Pulse Width Timing Parameters											
Symbol	-	-1		-2		}	Unit					
	Min	Max	Min	Max	Min	Max						
t _{CH}	2.00		2.50		2.75		ns					
t _{CL}	2.00		2.50		2.75		ns					
t _{CLRP}	0.20		0.28		0.41		ns					
t _{PREP}	0.20		0.28		0.41		ns					
t _{ESBCH}	2.00		2.50		2.75		ns					
t _{ESBCL}	2.00		2.50		2.75		ns					
t _{ESBWP}	1.29		1.80		2.66		ns					
t _{ESBRP}	1.04		1.45		2.14		ns					

Table 59. EP2	Table 59. EP20K60E External Timing Parameters											
Symbol	ol -1			-2	-3	Unit						
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.03		2.12		2.23		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	4.84	2.00	5.31	2.00	5.81	ns					
tinsupll	1.12		1.15		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	3.37	0.50	3.69	-	-	ns					

APEX 20K Programmable Logic Device Family Data Sheet

Table 87. EP2	Table 87. EP20K400E f _{MAX} Routing Delays											
Symbol	-1 Spe	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade						
	Min	Max	Min	Max	Min	Max						
t _{F1-4}		0.25		0.25		0.26	ns					
t _{F5-20}		1.01		1.12		1.25	ns					
t _{F20+}		3.71		3.92		4.17	ns					

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.36		2.22		2.35		ns	
t _{CL}	1.36		2.26		2.35		ns	
t _{CLRP}	0.18		0.18		0.19		ns	
t _{PREP}	0.18		0.18		0.19		ns	
t _{ESBCH}	1.36		2.26		2.35		ns	
t _{ESBCL}	1.36		2.26		2.35		ns	
t _{ESBWP}	1.17		1.38		1.56		ns	
t _{ESBRP}	0.94		1.09		1.25		ns	

Table 89. EP2	Table 89. EP20K400E External Timing Parameters												
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade							
	Min	Max	Min	Max	Min	Max							
t _{INSU}	2.51		2.64		2.77		ns						
t _{INH}	0.00		0.00		0.00		ns						
t _{outco}	2.00	5.25	2.00	5.79	2.00	6.32	ns						
t _{insupll}	3.221		3.38		-		ns						
t _{INHPLL}	0.00		0.00		-		ns						
t _{outcopll}	0.50	2.25	0.50	2.45	-	-	ns						

Г

Table 90. EP20K40	Table 90. EP20K400E External Bidirectional Timing Parameters										
Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit					
	Min	Max	Min	Max	Min	Max					
t _{insubidir}	2.93		3.23		3.44		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
t _{outcobidir}	2.00	5.25	2.00	5.79	2.00	6.32	ns				
t _{XZBIDIR}		5.95		6.77		7.12	ns				
t _{zxbidir}		5.95		6.77		7.12	ns				
t _{insubidirpll}	4.31		4.76		-		ns				
t _{inhbidirpll}	0.00		0.00		-		ns				
t _{outcobidirpll}	0.50	2.25	0.50	2.45	-	-	ns				
t _{xzbidirpll}		2.94		3.43		-	ns				
t _{ZXBIDIRPLL}		2.94		3.43		-	ns				

Tables 91 through 96 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K600E APEX 20KE devices.

Table 91. EP20K600E f _{MAX} LE Timing Microparameters										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.16		0.16		0.17		ns			
t _H	0.29		0.33		0.37		ns			
t _{CO}		0.65		0.38		0.49	ns			
t _{LUT}		0.70		1.00		1.30	ns			

Т

Table 92. EP20k	600E f _{MAX} ES	B Timing Micr	oparameters					
Symbol	-1 Spee	ed Grade	-2 Spe	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{ESBARC}		1.67		2.39		3.11	ns	
t _{ESBSRC}		2.27		3.07		3.86	ns	
t _{ESBAWC}		3.19		4.56		5.93	ns	
t _{ESBSWC}		3.51		4.62		5.72	ns	
t _{ESBWASU}	1.46		2.08		2.70		ns	
t _{ESBWAH}	0.00		0.00		0.00		ns	
t _{ESBWDSU}	1.60		2.29		2.97		ns	
t _{ESBWDH}	0.00		0.00		0.00		ns	
t _{ESBRASU}	1.61		2.30		2.99		ns	
t _{ESBRAH}	0.00		0.00		0.00		ns	
t _{ESBWESU}	1.49		2.30		3.11		ns	
t _{ESBWEH}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	-0.01		0.35		0.71		ns	
t _{ESBDATAH}	0.13		0.13		0.13		ns	
t _{ESBWADDRSU}	0.19		0.62		1.06		ns	
t _{ESBRADDRSU}	0.25		0.71		1.17		ns	
t _{ESBDATACO1}		1.01		1.19		1.37	ns	
t _{ESBDATACO2}		2.18		3.12		4.05	ns	
t _{ESBDD}		3.19		4.56		5.93	ns	
t _{PD}		1.57		2.25		2.92	ns	
t _{PTERMSU}	0.85		1.43		2.01		ns	
t _{PTERMCO}		1.03		1.21		1.39	ns	

Table 93. EP20K600E f _{MAX} Routing Delays									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.22		0.25		0.26	ns		
t _{F5-20}		1.26		1.39		1.52	ns		
t _{F20+}		3.51		3.88		4.26	ns		

Table 108. EP20K1500E External Bidirectional Timing Parameters									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{insubidir}	3.47		3.68		3.99		ns		
t _{inhbidir}	0.00		0.00		0.00		ns		
toutcobidir	2.00	6.18	2.00	6.81	2.00	7.36	ns		
t _{XZBIDIR}		6.91		7.62		8.38	ns		
t _{ZXBIDIR}		6.91		7.62		8.38	ns		
t _{insubidirpll}	3.05		3.26				ns		
t _{inhbidirpll}	0.00		0.00				ns		
t _{outcobidirpll}	0.50	2.67	0.50	2.99			ns		
t _{XZBIDIRPLL}		3.41		3.80			ns		
t _{ZXBIDIRPLL}		3.41		3.80			ns		

Tables 109 and 110 show selectable I/O standard input and output delays for APEX 20KE devices. If you select an I/O standard input or output delay other than LVCMOS, add or subtract the selected speed grade to or from the LVCMOS value.

Table 109. Selectable I/O Standard Input Delays									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max	Min		
LVCMOS		0.00		0.00		0.00	ns		
LVTTL		0.00		0.00		0.00	ns		
2.5 V		0.00		0.04		0.05	ns		
1.8 V		-0.11		0.03		0.04	ns		
PCI		0.01		0.09		0.10	ns		
GTL+		-0.24		-0.23		-0.19	ns		
SSTL-3 Class I		-0.32		-0.21		-0.47	ns		
SSTL-3 Class II		-0.08		0.03		-0.23	ns		
SSTL-2 Class I		-0.17		-0.06		-0.32	ns		
SSTL-2 Class II		-0.16		-0.05		-0.31	ns		
LVDS		-0.12		-0.12		-0.12	ns		
CTT		0.00		0.00		0.00	ns		
AGP		0.00		0.00		0.00	ns		

Г