



Welcome to **E-XFL.COM** 

# Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                             |
|--------------------------------|-------------------------------------------------------------|
| Product Status                 | Obsolete                                                    |
| Number of LABs/CLBs            | 640                                                         |
| Number of Logic Elements/Cells | 6400                                                        |
| Total RAM Bits                 | 81920                                                       |
| Number of I/O                  | 88                                                          |
| Number of Gates                | 404000                                                      |
| Voltage - Supply               | 1.71V ~ 1.89V                                               |
| Mounting Type                  | Surface Mount                                               |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                             |
| Package / Case                 | 144-LQFP                                                    |
| Supplier Device Package        | 144-TQFP (20x20)                                            |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/ep20k160efc144-1 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Table 5. APEX 20K F | Table 5. APEX 20K FineLine BGA Package Options & I/O Count       Notes (1), (2) |         |         |                |           |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------|---------|---------|----------------|-----------|--|--|--|--|
| Device              | 144 Pin                                                                         | 324 Pin | 484 Pin | 672 Pin        | 1,020 Pin |  |  |  |  |
| EP20K30E            | 93                                                                              | 128     |         |                |           |  |  |  |  |
| EP20K60E            | 93                                                                              | 196     |         |                |           |  |  |  |  |
| EP20K100            |                                                                                 | 252     |         |                |           |  |  |  |  |
| EP20K100E           | 93                                                                              | 246     |         |                |           |  |  |  |  |
| EP20K160E           |                                                                                 |         | 316     |                |           |  |  |  |  |
| EP20K200            |                                                                                 |         | 382     |                |           |  |  |  |  |
| EP20K200E           |                                                                                 |         | 376     | 376            |           |  |  |  |  |
| EP20K300E           |                                                                                 |         |         | 408            |           |  |  |  |  |
| EP20K400            |                                                                                 |         |         | 502 <i>(3)</i> |           |  |  |  |  |
| EP20K400E           |                                                                                 |         |         | 488 (3)        |           |  |  |  |  |
| EP20K600E           |                                                                                 |         |         | 508 (3)        | 588       |  |  |  |  |
| EP20K1000E          |                                                                                 |         |         | 508 (3)        | 708       |  |  |  |  |
| EP20K1500E          |                                                                                 |         |         |                | 808       |  |  |  |  |

#### Notes to Tables 4 and 5:

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

| Table 6. APEX 20K QFP, BGA & PGA Package Sizes                                                   |              |             |             |             |             |             |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|--|--|--|--|
| Feature                                                                                          | 144-Pin TQFP | 208-Pin QFP | 240-Pin QFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA |  |  |  |  |
| Pitch (mm)                                                                                       | 0.50         | 0.50        | 0.50        | 1.27        | 1.27        | _           |  |  |  |  |
| Area (mm <sup>2</sup> )                                                                          | 484          | 924         | 1,218       | 1,225       | 2,025       | 3,906       |  |  |  |  |
| $\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 22 × 22      | 30.4 × 30.4 | 34.9 × 34.9 | 35 × 35     | 45 × 45     | 62.5 × 62.5 |  |  |  |  |

| Table 7. APEX 20K FineLine BGA Package Sizes |         |         |         |         |           |  |  |  |
|----------------------------------------------|---------|---------|---------|---------|-----------|--|--|--|
| Feature                                      | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin |  |  |  |
| Pitch (mm)                                   | 1.00    | 1.00    | 1.00    | 1.00    | 1.00      |  |  |  |
| Area (mm <sup>2</sup> )                      | 169     | 361     | 529     | 729     | 1,089     |  |  |  |
| $Length \times Width (mm \times mm)$         | 13 × 13 | 19×19   | 23 × 23 | 27 × 27 | 33 × 33   |  |  |  |

The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

#### Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NoT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NoT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV\_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

#### FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

The programmable register also supports an asynchronous clear function. Within the ESB, two asynchronous clears are generated from global signals and the local interconnect. Each macrocell can either choose between the two asynchronous clear signals or choose to not be cleared. Either of the two clear signals can be inverted within the ESB. Figure 15 shows the ESB control logic when implementing product-terms.

Dedicated Clocks Global Signals Local Interconnect Local Interconnect Local Interconnect Local Interconnect CLR1 CLKENA2 CLK1 CLKENA1 CLR<sub>2</sub>

Figure 15. ESB Product-Term Mode Control Logic

Note to Figure 15:

(1) APEX 20KE devices have four dedicated clocks.

#### Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 32 product terms to feed the macrocell OR logic directly, with two product terms provided by the macrocell and 30 parallel expanders provided by the neighboring macrocells in the ESB.

The Quartus II software Compiler can allocate up to 15 sets of up to two parallel expanders per set to the macrocells automatically. Each set of two parallel expanders incurs a small, incremental timing delay. Figure 16 shows the APEX 20K parallel expanders.

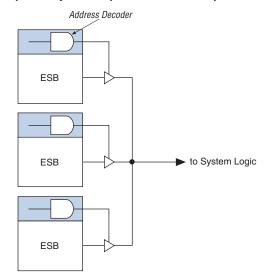



Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.



Figure 19. APEX 20K ESB Implementing Dual-Port RAM

#### Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.




Figure 21. ESB in Input/Output Clock Mode Note (1)

Notes to Figure 21:

- (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.
- (2) APEX 20KE devices have four dedicated clocks.

## Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.



For more information on APEX 20KE devices and CAM, see *Application Note 119 (Implementing High-Speed Search Applications with APEX CAM).* 

#### **Driving Signals to the ESB**

ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic.

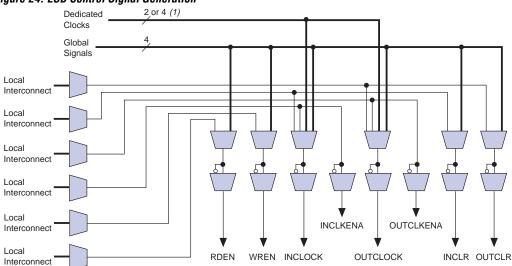



Figure 24. ESB Control Signal Generation

Note to Figure 24:

(1) APEX 20KE devices have four dedicated clocks.

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

#### Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

#### **Programmable Speed/Power Control**

APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo Bit<sup>TM</sup> option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

## I/O Structure

The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently.

The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay.

Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software.

| Table 10. APEX 20K Programmable Delay Chains |                                         |  |  |  |  |  |
|----------------------------------------------|-----------------------------------------|--|--|--|--|--|
| Programmable Delays                          | Quartus II Logic Option                 |  |  |  |  |  |
| Input pin to core delay                      | Decrease input delay to internal cells  |  |  |  |  |  |
| Input pin to input register delay            | Decrease input delay to input register  |  |  |  |  |  |
| Core to output register delay                | Decrease input delay to output register |  |  |  |  |  |
| Output register t <sub>CO</sub> delay        | Increase delay to output pin            |  |  |  |  |  |

The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices.

The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

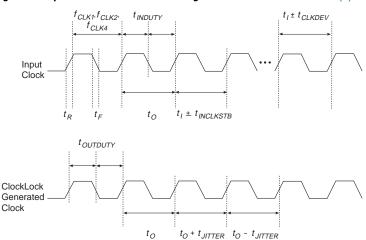



Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

*Note to Figure 30:* 

(1) The tl parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

| Symbol                | Parameter                                                                                                                | Min | Max        | Unit |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------|-----|------------|------|--|
| f <sub>OUT</sub>      | Output frequency                                                                                                         | 25  | 180        | MHz  |  |
| f <sub>CLK1</sub> (1) | Input clock frequency (ClockBoost clock multiplication factor equals 1)                                                  | 25  | 180 (1)    | MHz  |  |
| f <sub>CLK2</sub>     | Input clock frequency (ClockBoost clock multiplication factor equals 2)                                                  | 16  | 90         | MHz  |  |
| f <sub>CLK4</sub>     | Input clock frequency (ClockBoost clock multiplication factor equals 4)                                                  | 10  | 48         | MHz  |  |
| <sup>t</sup> OUTDUTY  | Duty cycle for ClockLock/ClockBoost-generated clock                                                                      | 40  | 60         | %    |  |
| f <sub>CLKDEV</sub>   | Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2) |     | 25,000 (3) | PPM  |  |
| t <sub>R</sub>        | Input rise time                                                                                                          |     | 5          | ns   |  |
| t <sub>F</sub>        | Input fall time                                                                                                          |     | 5          | ns   |  |
| t <sub>LOCK</sub>     | Time required for ClockLock/ClockBoost to acquire lock (4)                                                               |     | 10         | μs   |  |

| Device     |                     | IDCODE (32 Bits) (1)  |                                    |           |  |  |  |  |  |  |  |
|------------|---------------------|-----------------------|------------------------------------|-----------|--|--|--|--|--|--|--|
|            | Version<br>(4 Bits) | Part Number (16 Bits) | Manufacturer<br>Identity (11 Bits) | 1 (1 Bit) |  |  |  |  |  |  |  |
| EP20K30E   | 0000                | 1000 0000 0011 0000   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K60E   | 0000                | 1000 0000 0110 0000   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K100   | 0000                | 0000 0100 0001 0110   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K100E  | 0000                | 1000 0001 0000 0000   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K160E  | 0000                | 1000 0001 0110 0000   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K200   | 0000                | 0000 1000 0011 0010   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K200E  | 0000                | 1000 0010 0000 0000   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K300E  | 0000                | 1000 0011 0000 0000   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K400   | 0000                | 0001 0110 0110 0100   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K400E  | 0000                | 1000 0100 0000 0000   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K600E  | 0000                | 1000 0110 0000 0000   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |
| EP20K1000E | 0000                | 1001 0000 0000 0000   | 000 0110 1110                      | 1         |  |  |  |  |  |  |  |

#### Notes to Table 21:

- (1) The most significant bit (MSB) is on the left.
- (2) The IDCODE's least significant bit (LSB) is always 1.

Figure 31 shows the timing requirements for the JTAG signals.

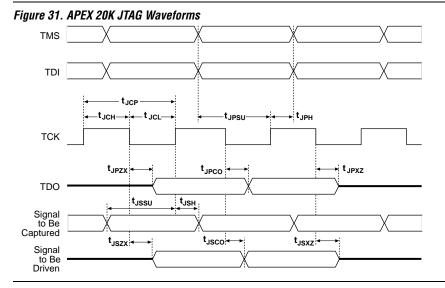
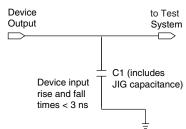




Figure 32. APEX 20K AC Test Conditions Note (1)



#### Note to Figure 32:

(1) Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

# Operating Conditions

Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices.

| Table 2            | Table 23. APEX 20K 5.0-V Tolerant Device Absolute Maximum Ratings       Notes (1), (2) |                                                |      |      |      |  |  |  |  |
|--------------------|----------------------------------------------------------------------------------------|------------------------------------------------|------|------|------|--|--|--|--|
| Symbol             | Parameter                                                                              | Conditions                                     | Min  | Max  | Unit |  |  |  |  |
| V <sub>CCINT</sub> | Supply voltage                                                                         | With respect to ground (3)                     | -0.5 | 3.6  | V    |  |  |  |  |
| V <sub>CCIO</sub>  |                                                                                        |                                                | -0.5 | 4.6  | V    |  |  |  |  |
| V <sub>I</sub>     | DC input voltage                                                                       |                                                | -2.0 | 5.75 | V    |  |  |  |  |
| I <sub>OUT</sub>   | DC output current, per pin                                                             |                                                | -25  | 25   | mA   |  |  |  |  |
| T <sub>STG</sub>   | Storage temperature                                                                    | No bias                                        | -65  | 150  | ° C  |  |  |  |  |
| T <sub>AMB</sub>   | Ambient temperature                                                                    | Under bias                                     | -65  | 135  | ° C  |  |  |  |  |
| TJ                 | Junction temperature                                                                   | PQFP, RQFP, TQFP, and BGA packages, under bias |      | 135  | ° C  |  |  |  |  |
|                    |                                                                                        | Ceramic PGA packages, under bias               |      | 150  | °C   |  |  |  |  |

| Symbol            | Parameter                                                                 | Conditions                                                                        | Min | Тур | Max                     | Unit |
|-------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----|-----|-------------------------|------|
| V <sub>OL</sub>   | 3.3-V low-level TTL output voltage                                        | I <sub>OL</sub> = 12 mA DC,<br>V <sub>CCIO</sub> = 3.00 V (11)                    |     |     | 0.45                    | V    |
|                   | 3.3-V low-level CMOS output voltage                                       | I <sub>OL</sub> = 0.1 mA DC,<br>V <sub>CCIO</sub> = 3.00 V (11)                   |     |     | 0.2                     | V    |
|                   | 3.3-V low-level PCI output voltage                                        | I <sub>OL</sub> = 1.5 mA DC,<br>V <sub>CCIO</sub> = 3.00 to 3.60 V<br>(11)        |     |     | 0.1 × V <sub>CCIO</sub> | V    |
|                   | 2.5-V low-level output voltage                                            | I <sub>OL</sub> = 0.1 mA DC,<br>V <sub>CCIO</sub> = 2.30 V (11)                   |     |     | 0.2                     | ٧    |
|                   |                                                                           | I <sub>OL</sub> = 1 mA DC,<br>V <sub>CCIO</sub> = 2.30 V (11)                     |     |     | 0.4                     | ٧    |
|                   |                                                                           | I <sub>OL</sub> = 2 mA DC,<br>V <sub>CCIO</sub> = 2.30 V (11)                     |     |     |                         | ٧    |
| I <sub>I</sub>    | Input pin leakage current                                                 | $V_1 = 5.75 \text{ to } -0.5 \text{ V}$                                           | -10 |     | 10                      | μΑ   |
| I <sub>OZ</sub>   | Tri-stated I/O pin leakage current                                        | $V_O = 5.75 \text{ to } -0.5 \text{ V}$                                           | -10 |     | 10                      | μΑ   |
| I <sub>CC0</sub>  | V <sub>CC</sub> supply current (standby)<br>(All ESBs in power-down mode) | V <sub>I</sub> = ground, no load, no toggling inputs, -1 speed grade (12)         |     | 10  |                         | mA   |
|                   |                                                                           | V <sub>I</sub> = ground, no load, no toggling inputs,<br>-2, -3 speed grades (12) |     | 5   |                         | mA   |
| R <sub>CONF</sub> | Value of I/O pin pull-up resistor                                         | V <sub>CCIO</sub> = 3.0 V (13)                                                    | 20  |     | 50                      | W    |
|                   | before and during configuration                                           | V <sub>CCIO</sub> = 2.375 V (13)                                                  | 30  |     | 80                      | W    |

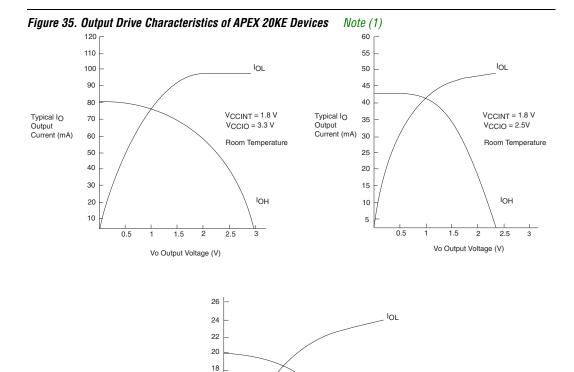



Figure 35 shows the output drive characteristics of APEX 20KE devices.

Note to Figure 35:
(1) These are transient (AC) currents.

Typical IO

Current (mA)

Output

16

14

> 4 2

> > 0.5

# **Timing Model**

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Vo Output Voltage (V)

VCCINT = 1.8V

 $V_{CCIO} = 1.8V$ 

IOH

2.0

Room Temperature

All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength.

Figure 36 shows the  $f_{MAX}$  timing model for APEX 20K devices.

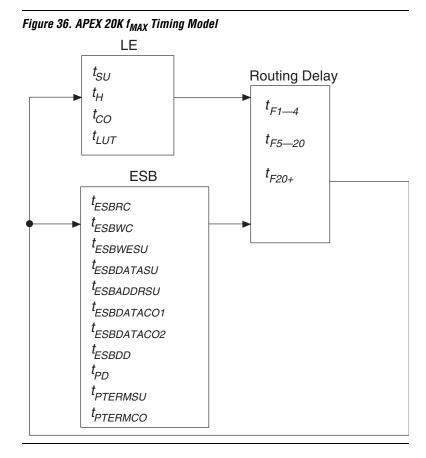



Figure 37 shows the  $f_{MAX}$  timing model for APEX 20KE devices. These parameters can be used to estimate  $f_{MAX}$  for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information.

| Symbol             | -1   |     | -    | -2  |      | -3  |    |
|--------------------|------|-----|------|-----|------|-----|----|
|                    | Min  | Max | Min  | Max | Min  | Max |    |
| t <sub>CH</sub>    | 0.55 |     | 0.78 |     | 1.15 |     | ns |
| t <sub>CL</sub>    | 0.55 |     | 0.78 |     | 1.15 |     | ns |
| t <sub>CLRP</sub>  | 0.22 |     | 0.31 |     | 0.46 |     | ns |
| t <sub>PREP</sub>  | 0.22 |     | 0.31 |     | 0.46 |     | ns |
| t <sub>ESBCH</sub> | 0.55 |     | 0.78 |     | 1.15 |     | ns |
| t <sub>ESBCL</sub> | 0.55 |     | 0.78 |     | 1.15 |     | ns |
| t <sub>ESBWP</sub> | 1.43 |     | 2.01 |     | 2.97 |     | ns |
| t <sub>ESBRP</sub> | 1.15 |     | 1.62 |     | 2.39 |     | ns |

| Symbol                | -1   |      | -2   |      | -3   |      | Unit |
|-----------------------|------|------|------|------|------|------|------|
|                       | Min  | Max  | Min  | Max  | Min  | Max  | 7    |
| t <sub>INSU</sub>     | 2.02 |      | 2.13 |      | 2.24 |      | ns   |
| t <sub>INH</sub>      | 0.00 |      | 0.00 |      | 0.00 |      | ns   |
| t <sub>outco</sub>    | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns   |
| t <sub>INSUPLL</sub>  | 2.11 |      | 2.23 |      | =    |      | ns   |
| t <sub>INHPLL</sub>   | 0.00 |      | 0.00 |      | =    |      | ns   |
| t <sub>OUTCOPLL</sub> | 0.50 | 2.60 | 0.50 | 2.88 | -    | -    | ns   |

| Symbol                     | -1   |      | -    | -2   |      | -3   |    |
|----------------------------|------|------|------|------|------|------|----|
|                            | Min  | Max  | Min  | Max  | Min  | Max  |    |
| t <sub>INSUBIDIR</sub>     | 1.85 |      | 1.77 |      | 1.54 |      | ns |
| t <sub>INHBIDIR</sub>      | 0.00 |      | 0.00 |      | 0.00 |      | ns |
| t <sub>OUTCOBIDIR</sub>    | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns |
| t <sub>XZBIDIR</sub>       |      | 7.48 |      | 8.46 |      | 9.83 | ns |
| t <sub>ZXBIDIR</sub>       |      | 7.48 |      | 8.46 |      | 9.83 | ns |
| t <sub>INSUBIDIRPLL</sub>  | 4.12 |      | 4.24 |      | =    |      | ns |
| t <sub>INHBIDIRPLL</sub>   | 0.00 |      | 0.00 |      | -    |      | ns |
| t <sub>OUTCOBIDIRPLL</sub> | 0.50 | 2.60 | 0.50 | 2.88 | -    | -    | ns |
| t <sub>XZBIDIRPLL</sub>    |      | 5.21 |      | 5.99 |      | -    | ns |
| t <sub>ZXBIDIRPLL</sub>    |      | 5.21 |      | 5.99 |      | -    | ns |

| Symbol                    | -1   |      | -2   |      | -3   |      | Unit |
|---------------------------|------|------|------|------|------|------|------|
|                           | Min  | Max  | Min  | Max  | Min  | Max  |      |
| t <sub>INSUBIDIR</sub>    | 2.86 |      | 3.24 |      | 3.54 |      | ns   |
| t <sub>INHBIDIR</sub>     | 0.00 |      | 0.00 |      | 0.00 |      | ns   |
| t <sub>OUTCOBIDIR</sub>   | 2.00 | 5.07 | 2.00 | 5.59 | 2.00 | 6.13 | ns   |
| t <sub>XZBIDIR</sub>      |      | 7.43 |      | 8.23 |      | 8.58 | ns   |
| t <sub>ZXBIDIR</sub>      |      | 7.43 |      | 8.23 |      | 8.58 | ns   |
| t <sub>INSUBIDIRPLL</sub> | 4.93 |      | 5.48 |      | -    |      | ns   |
| t <sub>INHBIDIRPLL</sub>  | 0.00 |      | 0.00 |      | -    |      | ns   |
| toutcobidirpll            | 0.50 | 3.00 | 0.50 | 3.35 | -    | -    | ns   |
| t <sub>XZBIDIRPLL</sub>   |      | 5.36 |      | 5.99 |      | -    | ns   |
| t <sub>ZXBIDIRPLL</sub>   |      | 5.36 |      | 5.99 |      | -    | ns   |

Tables 73 through 78 describe  $f_{MAX}$  LE Timing Microparameters,  $f_{MAX}$  ESB Timing Microparameters,  $f_{MAX}$  Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

| Table 73. EP20K200E f <sub>MAX</sub> LE Timing Microparameters |      |       |      |      |      |      |    |  |  |
|----------------------------------------------------------------|------|-------|------|------|------|------|----|--|--|
| Symbol                                                         | -    | -1 -2 |      | -:   | 3    | Unit |    |  |  |
|                                                                | Min  | Max   | Min  | Max  | Min  | Max  |    |  |  |
| t <sub>SU</sub>                                                | 0.23 |       | 0.24 |      | 0.26 |      | ns |  |  |
| t <sub>H</sub>                                                 | 0.23 |       | 0.24 |      | 0.26 |      | ns |  |  |
| $t_{CO}$                                                       |      | 0.26  |      | 0.31 |      | 0.36 | ns |  |  |
| t <sub>LUT</sub>                                               |      | 0.70  |      | 0.90 |      | 1.14 | ns |  |  |

| Symbol                  | -1   |      | -2   |      | -3   |      | Unit |
|-------------------------|------|------|------|------|------|------|------|
|                         | Min  | Max  | Min  | Max  | Min  | Max  |      |
| t <sub>ESBARC</sub>     |      | 1.79 |      | 2.44 |      | 3.25 | ns   |
| t <sub>ESBSRC</sub>     |      | 2.40 |      | 3.12 |      | 4.01 | ns   |
| t <sub>ESBAWC</sub>     |      | 3.41 |      | 4.65 |      | 6.20 | ns   |
| t <sub>ESBSWC</sub>     |      | 3.68 |      | 4.68 |      | 5.93 | ns   |
| t <sub>ESBWASU</sub>    | 1.55 |      | 2.12 |      | 2.83 |      | ns   |
| t <sub>ESBWAH</sub>     | 0.00 |      | 0.00 |      | 0.00 |      | ns   |
| t <sub>ESBWDSU</sub>    | 1.71 |      | 2.33 |      | 3.11 |      | ns   |
| t <sub>ESBWDH</sub>     | 0.00 |      | 0.00 |      | 0.00 |      | ns   |
| t <sub>ESBRASU</sub>    | 1.72 |      | 2.34 |      | 3.13 |      | ns   |
| t <sub>ESBRAH</sub>     | 0.00 |      | 0.00 |      | 0.00 |      | ns   |
| t <sub>ESBWESU</sub>    | 1.63 |      | 2.36 |      | 3.28 |      | ns   |
| t <sub>ESBWEH</sub>     | 0.00 |      | 0.00 |      | 0.00 |      | ns   |
| t <sub>ESBDATASU</sub>  | 0.07 |      | 0.39 |      | 0.80 |      | ns   |
| t <sub>ESBDATAH</sub>   | 0.13 |      | 0.13 |      | 0.13 |      | ns   |
| t <sub>ESBWADDRSU</sub> | 0.27 |      | 0.67 |      | 1.17 |      | ns   |
| t <sub>ESBRADDRSU</sub> | 0.34 |      | 0.75 |      | 1.28 |      | ns   |
| t <sub>ESBDATACO1</sub> |      | 1.03 |      | 1.20 |      | 1.40 | ns   |
| t <sub>ESBDATACO2</sub> |      | 2.33 |      | 3.18 |      | 4.24 | ns   |
| t <sub>ESBDD</sub>      |      | 3.41 |      | 4.65 |      | 6.20 | ns   |
| t <sub>PD</sub>         |      | 1.68 |      | 2.29 |      | 3.06 | ns   |
| t <sub>PTERMSU</sub>    | 0.96 |      | 1.48 |      | 2.14 |      | ns   |
| t <sub>PTERMCO</sub>    |      | 1.05 |      | 1.22 |      | 1.42 | ns   |

| Table 81. EP20K300E f <sub>MAX</sub> Routing Delays |     |      |       |      |     |      |    |  |  |  |
|-----------------------------------------------------|-----|------|-------|------|-----|------|----|--|--|--|
| Symbol                                              | -   | 1    | -2 -3 |      | 3   | Unit |    |  |  |  |
|                                                     | Min | Max  | Min   | Max  | Min | Max  |    |  |  |  |
| t <sub>F1-4</sub>                                   |     | 0.22 |       | 0.24 |     | 0.26 | ns |  |  |  |
| t <sub>F5-20</sub>                                  |     | 1.33 |       | 1.43 |     | 1.58 | ns |  |  |  |
| t <sub>F20+</sub>                                   |     | 3.63 |       | 3.93 |     | 4.35 | ns |  |  |  |

| Symbol             | -1 Speed Grade |     | -2 Speed Grade |     | -3 Speed Grade |     | Unit |
|--------------------|----------------|-----|----------------|-----|----------------|-----|------|
|                    | Min            | Max | Min            | Max | Min            | Max |      |
| t <sub>CH</sub>    | 2.00           |     | 2.50           |     | 2.75           |     | ns   |
| t <sub>CL</sub>    | 2.00           |     | 2.50           |     | 2.75           |     | ns   |
| t <sub>CLRP</sub>  | 0.18           |     | 0.26           |     | 0.34           |     | ns   |
| t <sub>PREP</sub>  | 0.18           |     | 0.26           |     | 0.34           |     | ns   |
| t <sub>ESBCH</sub> | 2.00           |     | 2.50           |     | 2.75           |     | ns   |
| t <sub>ESBCL</sub> | 2.00           |     | 2.50           |     | 2.75           |     | ns   |
| t <sub>ESBWP</sub> | 1.17           |     | 1.68           |     | 2.18           |     | ns   |
| t <sub>ESBRP</sub> | 0.95           |     | 1.35           |     | 1.76           |     | ns   |

| Symbol               | -1 Speed Grade |      | -2 Speed Grade |      | -3 Speed Grade |      | Unit |
|----------------------|----------------|------|----------------|------|----------------|------|------|
|                      | Min            | Max  | Min            | Max  | Min            | Max  |      |
| t <sub>INSU</sub>    | 2.74           |      | 2.74           |      | 2.87           |      | ns   |
| t <sub>INH</sub>     | 0.00           |      | 0.00           |      | 0.00           |      | ns   |
| t <sub>OUTCO</sub>   | 2.00           | 5.51 | 2.00           | 6.06 | 2.00           | 6.61 | ns   |
| t <sub>INSUPLL</sub> | 1.86           |      | 1.96           |      | -              |      | ns   |
| t <sub>INHPLL</sub>  | 0.00           |      | 0.00           |      | =              |      | ns   |
| toutcople            | 0.50           | 2.62 | 0.50           | 2.91 | -              | -    | ns   |

| Symbol                    | -1 Speed Grade |      | -2 Spee | d Grade | -3 Speed Grade |      | Unit |
|---------------------------|----------------|------|---------|---------|----------------|------|------|
|                           | Min            | Max  | Min     | Max     | Min            | Max  | 1    |
| t <sub>INSUBIDIR</sub>    | 0.64           |      | 0.98    |         | 1.08           |      | ns   |
| t <sub>INHBIDIR</sub>     | 0.00           |      | 0.00    |         | 0.00           |      | ns   |
| toutcobidir               | 2.00           | 5.51 | 2.00    | 6.06    | 2.00           | 6.61 | ns   |
| t <sub>XZBIDIR</sub>      |                | 6.10 |         | 6.74    |                | 7.10 | ns   |
| t <sub>ZXBIDIR</sub>      |                | 6.10 |         | 6.74    |                | 7.10 | ns   |
| t <sub>INSUBIDIRPLL</sub> | 2.26           |      | 2.68    |         | -              |      | ns   |
| t <sub>INHBIDIRPLL</sub>  | 0.00           |      | 0.00    |         | -              |      | ns   |
| toutcobidirpll            | 0.50           | 2.62 | 0.50    | 2.91    | -              | -    | ns   |
| <sup>t</sup> XZBIDIRPLL   |                | 3.21 |         | 3.59    |                | -    | ns   |
| tzxbidirpll               |                | 3.21 |         | 3.59    |                | -    | ns   |

Tables 97 through 102 describe  $f_{MAX}$  LE Timing Microparameters,  $f_{MAX}$  ESB Timing Microparameters,  $f_{MAX}$  Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices.

| Table 97. EP20K1000E f <sub>MAX</sub> LE Timing Microparameters |         |                |      |                |      |                |    |  |  |
|-----------------------------------------------------------------|---------|----------------|------|----------------|------|----------------|----|--|--|
| Symbol                                                          | -1 Spee | -1 Speed Grade |      | -2 Speed Grade |      | -3 Speed Grade |    |  |  |
|                                                                 | Min     | Max            | Min  | Max            | Min  | Max            | 7  |  |  |
| t <sub>SU</sub>                                                 | 0.25    |                | 0.25 |                | 0.25 |                | ns |  |  |
| t <sub>H</sub>                                                  | 0.25    |                | 0.25 |                | 0.25 |                | ns |  |  |
| t <sub>CO</sub>                                                 |         | 0.28           |      | 0.32           |      | 0.33           | ns |  |  |
| t <sub>LUT</sub>                                                |         | 0.80           |      | 0.95           |      | 1.13           | ns |  |  |



101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit\_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

