Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 640 | | Number of Logic Elements/Cells | 6400 | | Total RAM Bits | 81920 | | Number of I/O | 316 | | Number of Gates | 404000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 484-BBGA | | Supplier Device Package | 484-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k160efc484-3aa | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Figure 8. APEX 20K LE Operating Modes ### Notes to Figure 8: - (1) LEs in normal mode support register packing. - (2) There are two LAB-wide clock enables per LAB. - (3) When using the carry-in in normal mode, the packed register feature is unavailable. - (4) A register feedback multiplexer is available on LE1 of each LAB. - (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB. - (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB. The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. ### Clear & Preset Logic Control Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NoT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NoT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted. In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset. ### FastTrack Interconnect In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9. Figure 9. APEX 20K Interconnect Structure A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure. A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows. Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures. Figure 10. FastTrack Connection to Local Interconnect Figure 22. ESB in Single-Port Mode Note (1) Notes to Figure 22: - (1) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset. - (2) APEX 20KE devices have four dedicated clocks. ## **Content-Addressable Memory** In APEX 20KE devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it. CAM is used for high-speed search operations. When searching for data within a RAM block, the search is performed serially. Thus, finding a particular data word can take many cycles. CAM searches all addresses in parallel and outputs the address storing a particular word. When a match is found, a match flag is set high. Figure 23 shows the CAM block diagram. Figure 26. APEX 20KE Bidirectional I/O Registers Notes (1), (2) Row, Column, FastRow, 4 Dedicated or Local Interconnect Clock Inputs Notes to Figure 26: - (1) This programmable delay has four settings: off and three levels of delay. - (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. ### Advanced I/O Standard Support APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II. For more information on I/O standards supported by APEX 20KE devices, see *Application Note 117 (Using Selectable I/O Standards in Altera Devices)*. The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support. Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs. When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks. Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out. # MultiVolt I/O Interface The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems. | Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support | | | | | | | | | |---|--------------------------------------|--------------|--------------|--------------|-----|-----|--|--| | V _{CCIO} (V) | Input Signals (V) Output Signals (V) | | | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | 2.5 | ✓ | √ (1) | √ (1) | ✓ | | | | | | 3.3 | ✓ | ✓ | √ (1) | √ (2) | ✓ | ✓ | | | ### Notes to Table 12: - (1) The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO} . - (2) When $V_{\rm CCIO}$ = 3.3 V, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs. Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor. | Symbol | Parameter | I/O Standard | -1X Speed Grade | | -2X Speed Grade | | Units | |-------------------------|---|--------------|-----------------|-----|-----------------|-----|-------| | | | | Min | Max | Min Ma | Max | | | f _{VCO} (4) | Voltage controlled oscillator operating range | | 200 | 500 | 200 | 500 | MHz | | f _{CLOCK0} | Clock0 PLL output frequency for internal use | | 1.5 | 335 | 1.5 | 200 | MHz | | f _{CLOCK1} | Clock1 PLL output frequency for internal use | | 20 | 335 | 20 | 200 | MHz | | f _{CLOCK0_EXT} | Output clock frequency for | 3.3-V LVTTL | 1.5 | 245 | 1.5 | 226 | MHz | | | external clock0 output | 2.5-V LVTTL | 1.5 | 234 | 1.5 | 221 | MHz | | | | 1.8-V LVTTL | 1.5 | 223 | 1.5 | 216 | MHz | | | | GTL+ | 1.5 | 205 | 1.5 | 193 | MHz | | | | SSTL-2 Class | 1.5 | 158 | 1.5 | 157 | MHz | | | | SSTL-2 Class | 1.5 | 142 | 1.5 | 142 | MHz | | | | SSTL-3 Class | | 1.5 | 162 | MHz | | | | | SSTL-3 Class | 1.5 | 149 | 1.5 | 146 | MHz | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | f _{CLOCK1_EXT} | Output clock frequency for | 3.3-V LVTTL | 20 | 245 | 20 | 226 | MHz | | | external clock1 output | 2.5-V LVTTL | 20 | 234 | 20 | 221 | MHz | | | | 1.8-V LVTTL | 20 | 223 | 20 | 216 | MHz | | | | GTL+ | 20 | 205 | 20 | 193 | MHz | | | | SSTL-2 Class | 20 | 158 | 20 | 157 | MHz | | | | SSTL-2 Class | 20 | 142 | 20 | 142 | MHz | | | | SSTL-3 Class | 20 | 166 | 20 | 162 | MHz | | | | SSTL-3 Class | 20 | 149 | 20 | 146 | MHz | | | | LVDS | 20 | 420 | 20 | 350 | MHz | | Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1) | | | | | | | | | | |--|-----------------------|--------------|-----------------|-----|-----------------|-----|-------|--|--| | Symbol | Parameter | I/O Standard | -1X Speed Grade | | -2X Speed Grade | | Units | | | | | | | Min | Max | Min | Max | | | | | f _{IN} | Input clock frequency | 3.3-V LVTTL | 1.5 | 290 | 1.5 | 257 | MHz | | | | | | 2.5-V LVTTL | 1.5 | 281 | 1.5 | 250 | MHz | | | | | | 1.8-V LVTTL | 1.5 | 272 | 1.5 | 243 | MHz | | | | | | GTL+ | 1.5 | 303 | 1.5 | 261 | MHz | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | | ### Notes to Tables 17 and 18: - All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first. - (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode. - (4) The PLL VCO operating range is 200 MHz δ f_{VCO} δ 840 MHz for LVDS mode. ## SignalTap Embedded Logic Analyzer APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured. # IEEE Std. 1149.1 (JTAG) Boundary-Scan Support All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration. | Table 19. APEX 20K JT | Table 19. APEX 20K JTAG Instructions | | | | | | | | |----------------------------|--|--|--|--|--|--|--|--| | JTAG Instruction | Description | | | | | | | | | SAMPLE/PRELOAD | Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer. | | | | | | | | | EXTEST | Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins. | | | | | | | | | BYPASS (1) | Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation. | | | | | | | | | USERCODE | Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO. | | | | | | | | | IDCODE | Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO. | | | | | | | | | ICR Instructions | Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster TM or ByteBlasterMV TM download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor. | | | | | | | | | SignalTap Instructions (1) | Monitors internal device operation with the SignalTap embedded logic analyzer. | | | | | | | | ### Note to Table 19: (1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions. | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|---|--|-----------------------------------|-----|-----------------------------------|------| | V _{IH} | High-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | 1.7, 0.5 × V _{CCIO} (10) | | 4.1 | V | | V _{IL} | Low-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | -0.5 | | 0.8, 0.3 × V _{CCIO} (10) | V | | V _{OH} | 3.3-V high-level LVTTL output voltage | I _{OH} = -12 mA DC,
V _{CCIO} = 3.00 V (11) | 2.4 | | | V | | | 3.3-V high-level LVCMOS output voltage | $I_{OH} = -0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (11)$ | V _{CCIO} - 0.2 | | | V | | | 3.3-V high-level PCI output voltage | $I_{OH} = -0.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$
(11) | 0.9 × V _{CCIO} | | | V | | | 2.5-V high-level output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 2.30 V (11) | 2.1 | | | V | | | | $I_{OH} = -1 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 2.0 | | | V | | | | $I_{OH} = -2 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 1.7 | | | V | | V _{OL} | 3.3-V low-level LVTTL output voltage | I_{OL} = 12 mA DC,
V_{CCIO} = 3.00 V (12) | | | 0.4 | V | | | 3.3-V low-level LVCMOS output voltage | $I_{OL} = 0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (12)$ | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I_{OL} = 1.5 mA DC,
V_{CCIO} = 3.00 to 3.60 V
(12) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.2 | V | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.4 | V | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.7 | V | | I _I | Input pin leakage current | V _I = 4.1 to -0.5 V (13) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_0 = 4.1 \text{ to } -0.5 \text{ V } (13)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby)
(All ESBs in power-down mode) | $V_{I} =$ ground, no load, no toggling inputs, -1 speed grade | | 10 | | mA | | | | V _I = ground, no load, no
toggling inputs,
-2, -3 speed grades | | 5 | | mA | | R _{CONF} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 V (14) | 20 | | 50 | kΩ | | | before and during configuration | V _{CCIO} = 2.375 V (14) | 30 | | 80 | kΩ | | | | V _{CCIO} = 1.71 V (14) | 60 | | 150 | kΩ | | Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2) | | | | | | | |---|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | t _{ESBDATACO2} | ESB clock-to-output delay without output registers | | | | | | | t _{ESBDD} | ESB data-in to data-out delay for RAM mode | | | | | | | t _{PD} | ESB macrocell input to non-registered output | | | | | | | t _{PTERMSU} | ESB macrocell register setup time before clock | | | | | | | t _{PTERMCO} | ESB macrocell register clock-to-output delay | | | | | | | t _{F1-4} | Fanout delay using local interconnect | | | | | | | t _{F5-20} | Fanout delay using MegaLab Interconnect | | | | | | | t _{F20+} | Fanout delay using FastTrack Interconnect | | | | | | | t _{CH} | Minimum clock high time from clock pin | | | | | | | t _{CL} | Minimum clock low time from clock pin | | | | | | | t _{CLRP} | LE clear pulse width | | | | | | | t _{PREP} | LE preset pulse width | | | | | | | t _{ESBCH} | Clock high time | | | | | | | t _{ESBCL} | Clock low time | | | | | | | t _{ESBWP} | Write pulse width | | | | | | | t _{ESBRP} | Read pulse width | | | | | | Tables 32 and 33 describe APEX 20K external timing parameters. | Table 32. APEX 20K External Timing Parameters Note (1) | | | | | | | |--|---|--|--|--|--|--| | Symbol | Clock Parameter | | | | | | | t _{INSU} | Setup time with global clock at IOE register | | | | | | | t _{INH} | Hold time with global clock at IOE register | | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE register | | | | | | | Table 33. APEX 20K External Bidirectional Timing Parameters Note (1) | | | | | | | | |--|--|------------|--|--|--|--|--| | Symbol | Parameter | Conditions | | | | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 10 pF | | | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | C1 = 10 pF | | | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | C1 = 10 pF | | | | | | | Symbol | -1 Spee | d Grade | -2 Spee | -2 Speed Grade | | d Grade | Unit | |-----------------------------|---------|---------|---------|----------------|-----|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.1 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCOBIDIR} (2) | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 47. EP20K400 External Timing Parameters | | | | | | | | | | | |---|---------|---------|---------|----------------|-----|----------------|----|--|--|--| | Symbol | -1 Spee | d Grade | -2 Spec | -2 Speed Grade | | -3 Speed Grade | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{INSU} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{OUTCO} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | | | | t _{INSU} (2) | 0.4 | | 1.0 | | - | | ns | | | | | t _{INH} (2) | 0.0 | | 0.0 | | _ | | ns | | | | | t _{OUTCO} (2) | 0.5 | 3.1 | 0.5 | 4.1 | _ | _ | ns | | | | | Table 48. EP20K400 External Bidirections | I Timina | Parameters 1 4 1 | |--|----------|------------------| |--|----------|------------------| | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spe | ed Grade | Unit | |-----------------------------|---------|---------|---------|----------|--------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | t _{XZBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{ZXBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{INSUBIDIR} (2) | 0.5 | | 1.0 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir (2) | 0.5 | 3.1 | 0.5 | 4.1 | - | - | ns | | t _{XZBIDIR} (2) | | 6.2 | | 7.6 | | - | ns | | t _{ZXBIDIR} (2) | | 6.2 | | 7.6 | | _ | ns | | Symbol | - | 1 | | -2 | -; | 3 | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 2.03 | | 2.86 | | 4.24 | ns | | t _{ESBSRC} | | 2.58 | | 3.49 | | 5.02 | ns | | t _{ESBAWC} | | 3.88 | | 5.45 | | 8.08 | ns | | t _{ESBSWC} | | 4.08 | | 5.35 | | 7.48 | ns | | t _{ESBWASU} | 1.77 | | 2.49 | | 3.68 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.95 | | 2.74 | | 4.05 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.96 | | 2.75 | | 4.07 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.80 | | 2.73 | | 4.28 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.07 | | 0.48 | | 1.17 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.30 | | 0.80 | | 1.64 | | ns | | t _{ESBRADDRSU} | 0.37 | | 0.90 | | 1.78 | | ns | | t _{ESBDATACO1} | | 1.11 | | 1.32 | | 1.67 | ns | | t _{ESBDATACO2} | | 2.65 | | 3.73 | | 5.53 | ns | | t _{ESBDD} | | 3.88 | | 5.45 | | 8.08 | ns | | t _{PD} | | 1.91 | | 2.69 | | 3.98 | ns | | t _{PTERMSU} | 1.04 | | 1.71 | | 2.82 | | ns | | t _{PTERMCO} | | 1.13 | | 1.34 | | 1.69 | ns | | Table 51. EP2 | Table 51. EP20K30E f _{MAX} Routing Delays | | | | | | | | | | | | |--------------------|--|------|-----|------|-----|------|------|--|--|--|--|--| | Symbol | - | 1 | , | -2 | -3 | | Unit | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | | t _{F1-4} | | 0.24 | | 0.27 | | 0.31 | ns | | | | | | | t _{F5-20} | | 1.03 | | 1.14 | | 1.30 | ns | | | | | | | t _{F20+} | | 1.42 | | 1.54 | | 1.77 | ns | | | | | | | Symbol | - | -1 | | -2 | | -3 | | |--------------------|------|-----|------|-----|------|-----|----| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{CL} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{CLRP} | 0.22 | | 0.31 | | 0.46 | | ns | | t _{PREP} | 0.22 | | 0.31 | | 0.46 | | ns | | t _{ESBCH} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{ESBCL} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{ESBWP} | 1.43 | | 2.01 | | 2.97 | | ns | | t _{ESBRP} | 1.15 | | 1.62 | | 2.39 | | ns | | Symbol | -1 | | - | -2 | | -3 | | |-----------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.02 | | 2.13 | | 2.24 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{outco} | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t _{INSUPLL} | 2.11 | | 2.23 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | t _{OUTCOPLL} | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | Symbol | -1 | | - | 2 | - | Unit | | |----------------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 1.85 | | 1.77 | | 1.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t _{XZBIDIR} | | 7.48 | | 8.46 | | 9.83 | ns | | t _{ZXBIDIR} | | 7.48 | | 8.46 | | 9.83 | ns | | t _{INSUBIDIRPLL} | 4.12 | | 4.24 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | t _{OUTCOBIDIRPLL} | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | t _{XZBIDIRPLL} | | 5.21 | | 5.99 | | - | ns | | tzxbidirpll | | 5.21 | | 5.99 | | - | ns | | Symbol | -1 | | - | 2 | - | Unit | | |----------------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.77 | | 2.91 | | 3.11 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 4.84 | 2.00 | 5.31 | 2.00 | 5.81 | ns | | t _{XZBIDIR} | | 6.47 | | 7.44 | | 8.65 | ns | | t _{ZXBIDIR} | | 6.47 | | 7.44 | | 8.65 | ns | | t _{INSUBIDIRPLL} | 3.44 | | 3.24 | | - | | ns | | tinhbidirpll | 0.00 | | 0.00 | | - | | ns | | ^t OUTCOBIDIRPLL | 0.50 | 3.37 | 0.50 | 3.69 | - | - | ns | | txzbidirpll | | 5.00 | | 5.82 | | - | ns | | tzxbidirpll | | 5.00 | | 5.82 | | - | ns | Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices. | Table 61. EP20K100E f _{MAX} LE Timing Microparameters | | | | | | | | | | |--|------|------|------|------|------|------|------|--|--| | Symbol | -1 | | -2 | | -3 | | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{SU} | 0.25 | | 0.25 | | 0.25 | | ns | | | | t _H | 0.25 | | 0.25 | | 0.25 | | ns | | | | t _{CO} | | 0.28 | | 0.28 | | 0.34 | ns | | | | t _{LUT} | | 0.80 | | 0.95 | | 1.13 | ns | | | Tables 67 through 72 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K160E APEX 20KE devices. | Table 67. EP2 | Table 67. EP20K160E f _{MAX} LE Timing Microparameters | | | | | | | | | | | | |------------------|--|------|------|------|------|------|----|--|--|--|--|--| | Symbol | -1 | | | -2 | | -3 | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | | t _{SU} | 0.22 | | 0.24 | | 0.26 | | ns | | | | | | | t _H | 0.22 | | 0.24 | | 0.26 | | ns | | | | | | | t _{CO} | | 0.25 | | 0.31 | | 0.35 | ns | | | | | | | t _{LUT} | | 0.69 | | 0.88 | | 1.12 | ns | | | | | | | Table 87. EP2 | Table 87. EP20K400E f _{MAX} Routing Delays | | | | | | | | | | | |--------------------|---|------|--------|----------------|-----|---------|------|--|--|--|--| | Symbol | -1 Speed Grade | | -2 Spe | -2 Speed Grade | | d Grade | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | t _{F1-4} | | 0.25 | | 0.25 | | 0.26 | ns | | | | | | t _{F5-20} | | 1.01 | | 1.12 | | 1.25 | ns | | | | | | t _{F20+} | | 3.71 | | 3.92 | | 4.17 | ns | | | | | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | | |--------------------|----------------|-----|---------|----------------|------|----------------|----|--| | | Min | Max | Min | Max | Min | Max | | | | t _{CH} | 1.36 | | 2.22 | | 2.35 | | ns | | | t _{CL} | 1.36 | | 2.26 | | 2.35 | | ns | | | t _{CLRP} | 0.18 | | 0.18 | | 0.19 | | ns | | | t _{PREP} | 0.18 | | 0.18 | | 0.19 | | ns | | | t _{ESBCH} | 1.36 | | 2.26 | | 2.35 | | ns | | | t _{ESBCL} | 1.36 | | 2.26 | | 2.35 | | ns | | | t _{ESBWP} | 1.17 | | 1.38 | | 1.56 | | ns | | | t _{ESBRP} | 0.94 | | 1.09 | | 1.25 | | ns | | | Table 89. EP20K400E External Timing Parameters | | | | | | | | | |--|----------------|------|----------------|------|----------------|------|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | _ | | | t _{INSU} | 2.51 | | 2.64 | | 2.77 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{OUTCO} | 2.00 | 5.25 | 2.00 | 5.79 | 2.00 | 6.32 | ns | | | t _{INSUPLL} | 3.221 | | 3.38 | | - | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | | toutcople | 0.50 | 2.25 | 0.50 | 2.45 | - | - | ns | | | Table 99. EP2 | Table 99. EP20K1000E f _{MAX} Routing Delays | | | | | | | | | | |--------------------|--|------|----------------|------|----------------|------|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.27 | | 0.27 | | 0.27 | ns | | | | | t _{F5-20} | | 1.45 | | 1.63 | | 1.75 | ns | | | | | t _{F20+} | | 4.15 | | 4.33 | | 4.97 | ns | | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |--------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | 7 | | t _{CH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CLRP} | 0.20 | | 0.20 | | 0.20 | | ns | | t _{PREP} | 0.20 | | 0.20 | | 0.20 | | ns | | t _{ESBCH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBCL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBWP} | 1.28 | | 1.51 | | 1.65 | | ns | | t _{ESBRP} | 1.11 | | 1.29 | | 1.41 | | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-----------------------|----------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.70 | | 2.84 | | 2.97 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.75 | 2.00 | 6.33 | 2.00 | 6.90 | ns | | t _{INSUPLL} | 1.64 | | 2.09 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | t _{OUTCOPLL} | 0.50 | 2.25 | 0.50 | 2.99 | - | - | ns |