E·XFL

Intel - EP20K160EQC240-1 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	640
Number of Logic Elements/Cells	6400
Total RAM Bits	81920
Number of I/O	175
Number of Gates	404000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k160eqc240-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Additiona	al APEX 20K De	vice Features	Note (1)			
Feature	EP20K300E	EP20K400	EP20K400E	EP20K600E	EP20K1000E	EP20K1500E
Maximum system gates	728,000	1,052,000	1,052,000	1,537,000	1,772,000	2,392,000
Typical gates	300,000	400,000	400,000	600,000	1,000,000	1,500,000
LEs	11,520	16,640	16,640	24,320	38,400	51,840
ESBs	72	104	104	152	160	216
Maximum RAM bits	147,456	212,992	212,992	311,296	327,680	442,368
Maximum macrocells	1,152	1,664	1,664	2,432	2,560	3,456
Maximum user I/O pins	408	502	488	588	708	808

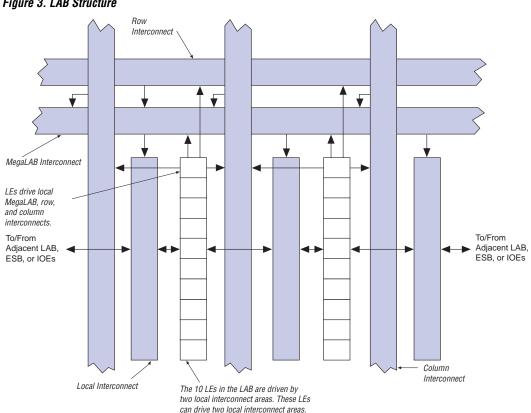
Note to Tables 1 and 2:

 The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates.

Additional Features

- Designed for low-power operation
 - 1.8-V and 2.5-V supply voltage (see Table 3)
 - MultiVolt[™] I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
 - ESB offering programmable power-saving mode

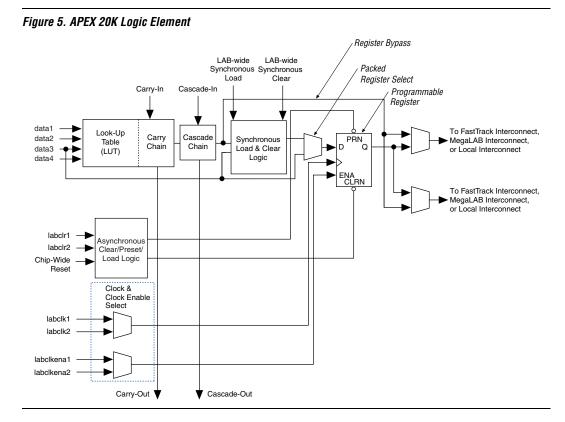
Feature	De	vice
	EP20K100 EP20K200 EP20K400	EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E EP20K1500E
Internal supply voltage (V _{CCINT})	2.5 V	1.8 V
MultiVolt I/O interface voltage levels (V _{CCIO})	2.5 V, 3.3 V, 5.0 V	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)

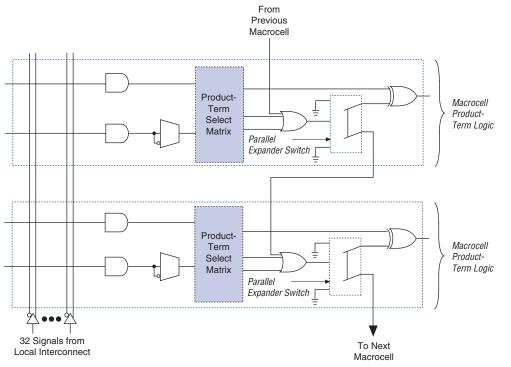

Note to Table 3:

(1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor.

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB.

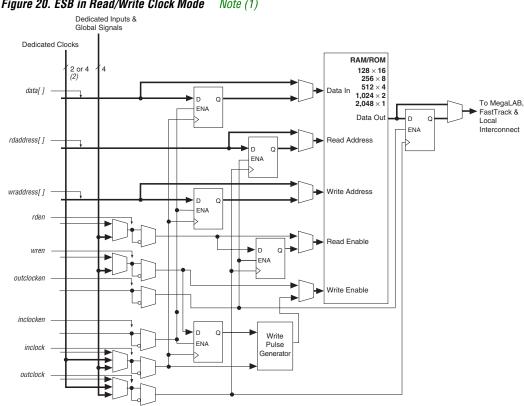

APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.


Logic Element

The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5.

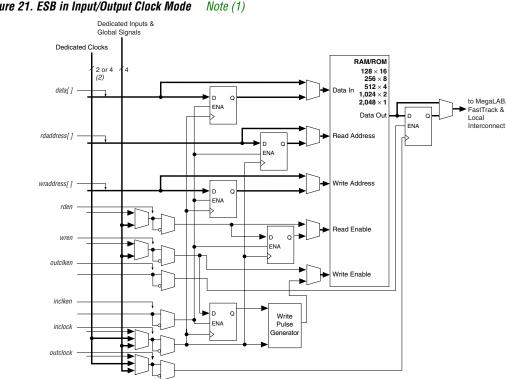
Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE.

Embedded System Block


The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Read/Write Clock Mode

The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode.


Figure 20. ESB in Read/Write Clock Mode Note (1)

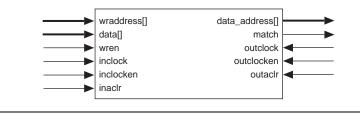
Notes to Figure 20:

- All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)
- APEX 20KE devices have four dedicated clocks. (2)

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode


Notes to Figure 21:

All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)APEX 20KE devices have four dedicated clocks. (2)

Single-Port Mode

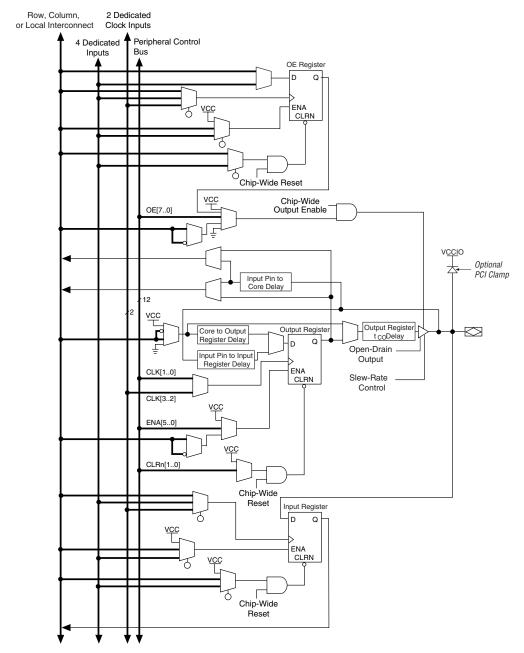
The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Altera Corporation

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.


When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.


The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

Figure 25. APEX 20K Bidirectional I/O Registers Note (1)

Altera Corporation

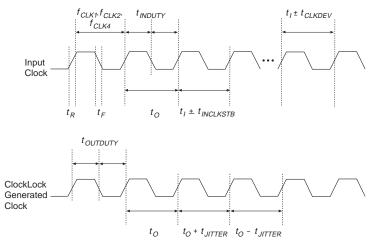


Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

Note to Figure 30:

(1) The tI parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

Symbol	Parameter	Min	Мах	Unit	
f _{OUT}	Output frequency	25	180	MHz	
f _{CLK1} (1)	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	180 (1)	MHz	
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	90	MHz	
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	48	MHz	
toutduty	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%	
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2)		25,000 (3)	PPM	
t _R	Input rise time		5	ns	
t _F	Input fall time		5	ns	
t _{LOCK}	Time required for ClockLock/ClockBoost to acquire lock (4)		10	μs	

٦

Notes to Table 16:

- (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The *f_{CLKDEV}* parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation.

Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices.

Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1)								
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit		
t _R	Input rise time				5	ns		
t _F	Input fall time				5	ns		
t _{INDUTY}	Input duty cycle		40		60	%		
t _{INJITTER}	Input jitter peak-to-peak				2% of input period	peak-to- peak		
t _{OUTJITTER}	Jitter on ClockLock or ClockBoost- generated clock				0.35% of output period	RMS		
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		45		55	%		
t _{LOCK} (2) _, (3)	Time required for ClockLock or ClockBoost to acquire lock				40	μs		

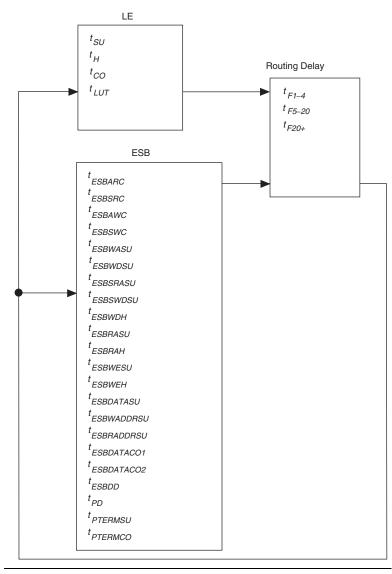


Figure 37. APEX 20KE f_{MAX} Timing Model

Figures 38 and 39 show the asynchronous and synchronous timing waveforms, respectively, for the ESB macroparameters in Table 31.

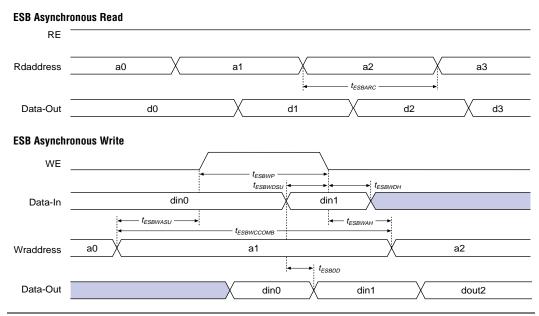


Figure 38. ESB Asynchronous Timing Waveforms

Notes to Tables 43 through 48:

- (1) This parameter is measured without using ClockLock or ClockBoost circuits.
- (2) This parameter is measured using ClockLock or ClockBoost circuits.

Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices.

Symbol	-	1	-	2	-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.01		0.02		0.02		ns
t _H	0.11		0.16		0.23		ns
t _{CO}		0.32		0.45		0.67	ns
t _{LUT}		0.85		1.20		1.77	ns

Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices.

Table 55. EP2	Table 55. EP20K60E f _{MAX} LE Timing Microparameters									
Symbol	-	1		-2		3	Unit			
	Min	Max	Min	Max	Min	Max	1			
t _{SU}	0.17		0.15		0.16		ns			
t _H	0.32		0.33		0.39		ns			
t _{CO}		0.29		0.40		0.60	ns			
t _{LUT}		0.77		1.07		1.59	ns			

Table 78. EP20K200E External Bidirectional Timing Parameters								
Symbol	-1		-	2	-	Unit		
	Min	Мах	Min	Max	Min	Max		
t _{insubidir}	2.81		3.19		3.54		ns	
t _{INHBIDIR}	0.00		0.00		0.00		ns	
t _{outcobidir}	2.00	5.12	2.00	5.62	2.00	6.11	ns	
t _{XZBIDIR}		7.51		8.32		8.67	ns	
t _{ZXBIDIR}		7.51		8.32		8.67	ns	
t _{insubidirpll}	3.30		3.64		-		ns	
t _{inhbidirpll}	0.00		0.00		-		ns	
t _{outcobidirpll}	0.50	3.01	0.50	3.36	-	-	ns	
t _{XZBIDIRPLL}		5.40		6.05		-	ns	
t _{ZXBIDIRPLL}		5.40		6.05		-	ns	

Tables 79 through 84 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K300E APEX 20KE devices.

Table 79. EP20K300E f _{MAX} LE Timing Microparameters								
Symbol	-	1	-	2	-;	3	Unit	
	Min	Max	Min	Max	Min	Max		
t _{SU}	0.16		0.17		0.18		ns	
t _H	0.31		0.33		0.38		ns	
t _{CO}		0.28		0.38		0.51	ns	
t _{LUT}		0.79		1.07		1.43	ns	

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.67		2.39		3.11	ns
t _{ESBSRC}		2.27		3.07		3.86	ns
t _{ESBAWC}		3.19		4.56		5.93	ns
t _{ESBSWC}		3.51		4.62		5.72	ns
t _{ESBWASU}	1.46		2.08		2.70		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.60		2.29		2.97		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.61		2.30		2.99		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.49		2.30		3.11		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.01		0.35		0.71		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.19		0.62		1.06		ns
t _{ESBRADDRSU}	0.25		0.71		1.17		ns
t _{ESBDATACO1}		1.01		1.19		1.37	ns
t _{ESBDATACO2}		2.18		3.12		4.05	ns
t _{ESBDD}		3.19		4.56		5.93	ns
t _{PD}		1.57		2.25		2.92	ns
t _{PTERMSU}	0.85		1.43		2.01		ns
t _{PTERMCO}		1.03		1.21		1.39	ns

Table 93. EP2	Table 93. EP20K600E f _{MAX} Routing Delays									
Symbol	-1 Spee	ed Grade	-2 Spe	ed Grade	-3 Spee	d Grade	Unit			
	Min	Max	Min	Max	Min	Мах				
t _{F1-4}		0.22		0.25		0.26	ns			
t _{F5-20}		1.26		1.39		1.52	ns			
t _{F20+}		3.51		3.88		4.26	ns			

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{CH}	2.00		2.50		2.75		ns
t _{CL}	2.00		2.50		2.75		ns
t _{CLRP}	0.18		0.26		0.34		ns
t _{PREP}	0.18		0.26		0.34		ns
t _{ESBCH}	2.00		2.50		2.75		ns
t _{ESBCL}	2.00		2.50		2.75		ns
t _{ESBWP}	1.17		1.68		2.18		ns
t _{ESBRP}	0.95		1.35		1.76		ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.74		2.74		2.87		ns
t _{INH}	0.00		0.00		0.00		ns
toutco	2.00	5.51	2.00	6.06	2.00	6.61	ns
tINSUPLL	1.86		1.96		-		ns
t _{INHPLL}	0.00		0.00		-		ns
toutcopll	0.50	2.62	0.50	2.91	-	-	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	0.64		0.98		1.08		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	5.51	2.00	6.06	2.00	6.61	ns
t _{xzbidir}		6.10		6.74		7.10	ns
t _{zxbidir}		6.10		6.74		7.10	ns
t _{insubidirpll}	2.26		2.68		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.62	0.50	2.91	-	-	ns
t _{xzbidirpll}		3.21		3.59		-	ns
t _{ZXBIDIRPLL}		3.21		3.59		-	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.78		2.02		1.95	ns
t _{ESBSRC}		2.52		2.91		3.14	ns
t _{ESBAWC}		3.52		4.11		4.40	ns
t _{ESBSWC}		3.23		3.84		4.16	ns
t _{ESBWASU}	0.62		0.67		0.61		ns
t _{ESBWAH}	0.41		0.55		0.55		ns
t _{ESBWDSU}	0.77		0.79		0.81		ns
t _{ESBWDH}	0.41		0.55		0.55		ns
t _{ESBRASU}	1.74		1.92		1.85		ns
t _{ESBRAH}	0.00		0.01		0.23		ns
t _{ESBWESU}	2.07		2.28		2.41		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.25		0.27		0.29		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.11		0.04		0.11		ns
t _{ESBRADDRSU}	0.14		0.11		0.16		ns
t _{ESBDATACO1}		1.29		1.50		1.63	ns
t _{ESBDATACO2}		2.55		2.99		3.22	ns
t _{ESBDD}		3.12		3.57		3.85	ns
t _{PD}		1.84		2.13		2.32	ns
t _{PTERMSU}	1.08		1.19		1.32		ns
t _{PTERMCO}		1.31		1.53		1.66	ns

Г

٦

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Мах	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.28		1.51		1.65		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Table 107. EP20K1500E External Timing Parameters									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max	-		
tINSU	3.09		3.30		3.58		ns		
t _{INH}	0.00		0.00		0.00		ns		
t _{outco}	2.00	6.18	2.00	6.81	2.00	7.36	ns		
t _{INSUPLL}	1.94		2.08		-		ns		
t _{INHPLL}	0.00		0.00		-		ns		
toutcopll	0.50	2.67	0.50	2.99	-	-	ns		

Table 110. Selectab	ole I/O Standa	ord Output De	lays					
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	Min	
LVCMOS		0.00		0.00		0.00	ns	
LVTTL		0.00		0.00		0.00	ns	
2.5 V		0.00		0.09		0.10	ns	
1.8 V		2.49		2.98		3.03	ns	
PCI		-0.03		0.17		0.16	ns	
GTL+		0.75		0.75		0.76	ns	
SSTL-3 Class I		1.39		1.51		1.50	ns	
SSTL-3 Class II		1.11		1.23		1.23	ns	
SSTL-2 Class I		1.35		1.48		1.47	ns	
SSTL-2 Class II		1.00		1.12		1.12	ns	
LVDS		-0.48		-0.48		-0.48	ns	
CTT		0.00		0.00		0.00	ns	
AGP		0.00		0.00		0.00	ns	

Power Consumption

To estimate device power consumption, use the interactive power calculator on the Altera web site at **http://www.altera.com**.

Configuration & Operation

The APEX 20K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

Operating Modes

The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*.

Before and during device configuration, all I/O pins are pulled to $\rm V_{\rm CCIO}$ by a built-in weak pull-up resistor.