E·XFL

Intel - EP20K160ETC144-2N Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

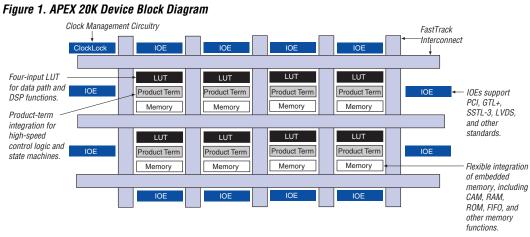
Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	640
Number of Logic Elements/Cells	6400
Total RAM Bits	81920
Number of I/O	88
Number of Gates	404000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k160etc144-2n

Email: info@E-XFL.COM

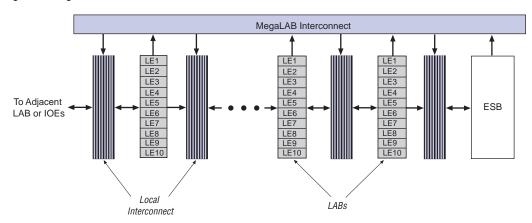

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Functional Description

APEX 20K devices incorporate LUT-based logic, product-term-based logic, and memory into one device. Signal interconnections within APEX 20K devices (as well as to and from device pins) are provided by the FastTrack[®] Interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KE devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards.

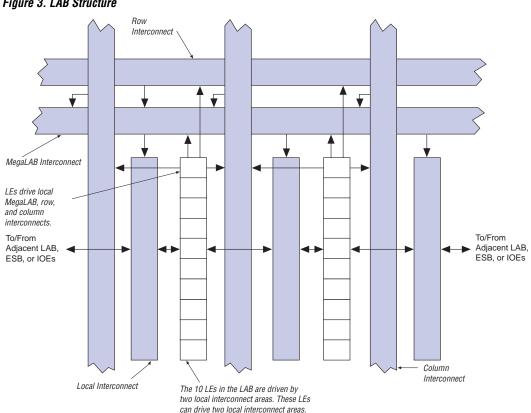
The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs ensures that the APEX 20K device can implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. The abundance of ESBs ensures that designers can create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20K device.



APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins.

MegaLAB Structure

APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.



Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB.

APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.

Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output.

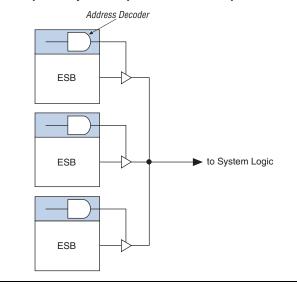
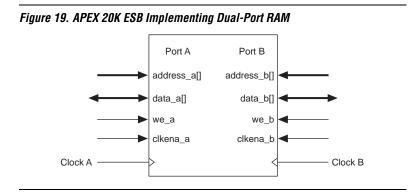
The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure.

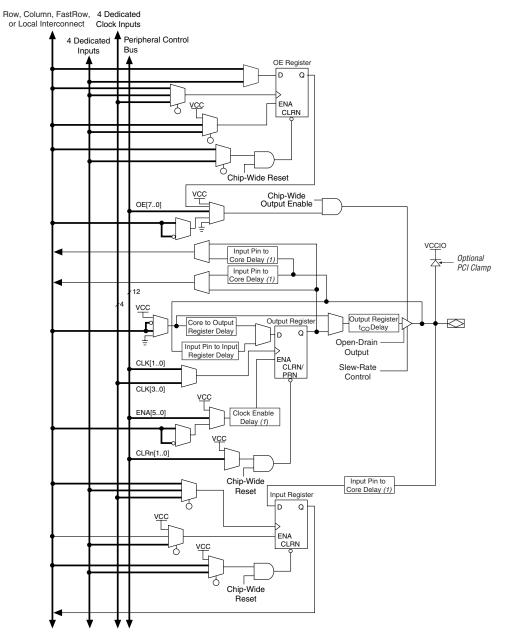
Carry Chain

The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higherorder bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions.

The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLAB[™] structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure.

Figure 6 shows how an *n*-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures.


Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

Figure 26. APEX 20KE Bidirectional I/O Registers N

Notes to Figure 26:

- (1) This programmable delay has four settings: off and three levels of delay.
- (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out.

MultiVolt I/O Interface

The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems.

Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support										
V _{CCIO} (V)	Input Signals (V) Output Signals (V)									
-	2.5	3.3	5.0	2.5	3.3	5.0				
2.5	\checkmark	√(1)	√ (1)	✓						
3.3	\checkmark	\checkmark	√ (1)	√ (2)	\checkmark	 Image: A start of the start of				

Table 12 summarizes 5.0-V tolerant APEX 20K MultiVolt I/O support.

Notes to Table 12:

- The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}.
- (2) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs.

Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pullup resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pullup resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Clock Phase & Delay Adjustment

The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices.

Notes to Table 16:

- (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The *f_{CLKDEV}* parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation.

Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices.

Table 17. AP	Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1)									
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit				
t _R	Input rise time				5	ns				
t _F	Input fall time				5	ns				
t _{INDUTY}	Input duty cycle		40		60	%				
t _{INJITTER}	Input jitter peak-to-peak				2% of input period	peak-to- peak				
t _{OUTJITTER}	Jitter on ClockLock or ClockBoost- generated clock				0.35% of output period	RMS				
t _{OUTDUTY}	Duty cycle for ClockLock or ClockBoost-generated clock		45		55	%				
t _{LOCK} (2) _, (3)	Time required for ClockLock or ClockBoost to acquire lock				40	μs				

Table 22 shows the JTAG timing parameters and values for APEX 20K devices.

Symbol	Parameter	Min	Max	Unit						
t _{JCP}	TCK clock period	100		ns						
t _{JCH}	TCK clock high time	50		ns						
t _{JCL}	TCK clock low time	50		ns						
t _{JPSU}	JTAG port setup time	20		ns						
t _{JPH}	JTAG port hold time	45		ns						
t _{JPCO}	JTAG port clock to output		25	ns						
t _{JPZX}	JTAG port high impedance to valid output		25	ns						
t _{JPXZ}	JTAG port valid output to high impedance		25	ns						
t _{JSSU}	Capture register setup time	20		ns						
t _{JSH}	Capture register hold time	45		ns						
t _{JSCO}	Update register clock to output		35	ns						
t _{JSZX}	Update register high impedance to valid output		35	ns						
t _{JSXZ}	Update register valid output to high impedance		35	ns						

Table 22. APEX 20K JTAG Timing Parameters & Values

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- Jam Programming & Test Language Specification

Generic Testing

Each APEX 20K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20K devices are made under conditions equivalent to those shown in Figure 32. Multiple test patterns can be used to configure devices during all stages of the production flow.

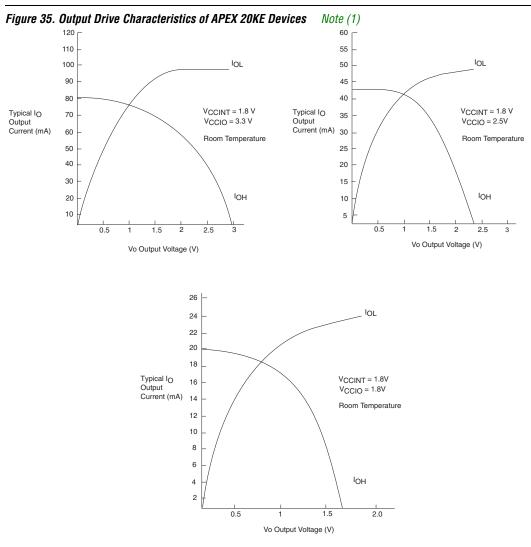


Figure 35 shows the output drive characteristics of APEX 20KE devices.

Note to Figure 35:(1) These are transient (AC) currents.

Timing Model

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Notes to Tables 43 through 48:

- (1) This parameter is measured without using ClockLock or ClockBoost circuits.
- (2) This parameter is measured using ClockLock or ClockBoost circuits.

Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices.

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.01		0.02		0.02		ns
t _H	0.11		0.16		0.23		ns
t _{CO}		0.32		0.45		0.67	ns
t _{LUT}		0.85		1.20		1.77	ns

Symbol	-1		-	-2		-3	
	Min	Max	Min	Max	Min	Мах	
t _{CH}	0.55		0.78		1.15		ns
t _{CL}	0.55		0.78		1.15		ns
t _{CLRP}	0.22		0.31		0.46		ns
t _{PREP}	0.22		0.31		0.46		ns
t _{ESBCH}	0.55		0.78		1.15		ns
t _{ESBCL}	0.55		0.78		1.15		ns
t _{ESBWP}	1.43		2.01		2.97		ns
t _{ESBRP}	1.15		1.62		2.39		ns

Symbol	-1		-2		-3		Unit
	Min	Мах	Min	Max	Min	Max	
t _{INSU}	2.02		2.13		2.24		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{INSUPLL}	2.11		2.23		-		ns
t _{INHPLL}	0.00		0.00		-		ns
toutcopll	0.50	2.60	0.50	2.88	-	-	ns

Symbol	-1		-	2	-	Unit	
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	1.85		1.77		1.54		ns
t _{inhbidir}	0.00		0.00		0.00		ns
t _{outcobidir}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{XZBIDIR}		7.48		8.46		9.83	ns
t _{ZXBIDIR}		7.48		8.46		9.83	ns
t _{insubidirpll}	4.12		4.24		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	2.60	0.50	2.88	-	-	ns
t _{XZBIDIRPLL}		5.21		5.99		-	ns
t _{ZXBIDIRPLL}		5.21		5.99		-	ns

Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices.

Table 55. EP2	Table 55. EP20K60E f _{MAX} LE Timing Microparameters										
Symbol	-1		-2		-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{SU}	0.17		0.15		0.16		ns				
t _H	0.32		0.33		0.39		ns				
t _{CO}		0.29		0.40		0.60	ns				
t _{LUT}		0.77		1.07		1.59	ns				

Table 57. EP2	Table 57. EP20K60E f _{MAX} Routing Delays										
Symbol	-	1	-2		-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.24		0.26		0.30	ns				
t _{F5-20}		1.45		1.58		1.79	ns				
t _{F20+}		1.96		2.14		2.45	ns				

Table 58. EP20K60E Minimum Pulse Width Timing Parameters										
Symbol	-	-1		-2		-3				
	Min	Max	Min	Max	Min	Max				
t _{CH}	2.00		2.50		2.75		ns			
t _{CL}	2.00		2.50		2.75		ns			
t _{CLRP}	0.20		0.28		0.41		ns			
t _{PREP}	0.20		0.28		0.41		ns			
t _{ESBCH}	2.00		2.50		2.75		ns			
t _{ESBCL}	2.00		2.50		2.75		ns			
t _{ESBWP}	1.29		1.80		2.66		ns			
t _{ESBRP}	1.04		1.45		2.14		ns			

Table 59. EP20K60E External Timing Parameters										
Symbol	-1		-	-2		-3				
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.03		2.12		2.23		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	4.84	2.00	5.31	2.00	5.81	ns			
t _{INSUPLL}	1.12		1.15		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
toutcopll	0.50	3.37	0.50	3.69	-	-	ns			

Symbol	-1		-	2	-	-3	Unit
	Min	Max	Min	Max	Min	Max	
t _{insubidir}	2.77		2.91		3.11		ns
t _{inhbidir}	0.00		0.00		0.00		ns
toutcobidir	2.00	4.84	2.00	5.31	2.00	5.81	ns
t _{XZBIDIR}		6.47		7.44		8.65	ns
t _{ZXBIDIR}		6.47		7.44		8.65	ns
t _{insubidirpll}	3.44		3.24		-		ns
t _{inhbidirpll}	0.00		0.00		-		ns
toutcobidirpll	0.50	3.37	0.50	3.69	-	-	ns
t _{XZBIDIRPLL}		5.00		5.82		-	ns
t _{zxbidirpll}		5.00		5.82		-	ns

Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices.

Table 61. EP20K100E f _{MAX} LE Timing Microparameters										
Symbol	-	1	-	2	-3		Unit			
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.25		0.25		0.25		ns			
t _H	0.25		0.25		0.25		ns			
t _{CO}		0.28		0.28		0.34	ns			
t _{LUT}		0.80		0.95		1.13	ns			

Symbol	-1	l	-	2	-3	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.36		2.44		2.65		ns
t _{CL}	1.36		2.44		2.65		ns
t _{CLRP}	0.18		0.19		0.21		ns
t _{PREP}	0.18		0.19		0.21		ns
t _{ESBCH}	1.36		2.44		2.65		ns
t _{ESBCL}	1.36		2.44		2.65		ns
t _{ESBWP}	1.18		1.48		1.76		ns
t _{ESBRP}	0.95		1.17		1.41		ns

Table 77. EP20K200E External Timing Parameters										
Symbol	-	1	,	-2	-3	-3				
	Min	Max	Min	Max	Min	Мах				
t _{INSU}	2.24		2.35		2.47		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	5.12	2.00	5.62	2.00	6.11	ns			
t _{INSUPLL}	2.13		2.07		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
t _{outcopll}	0.50	3.01	0.50	3.36	-	-	ns			

APEX 20K Programmable Logic Device Family Data Sheet

Table 87. EP2	OK400E f _{max}	Routing Delays	S				
Symbol	-1 Spee	d Grade	-2 Spe	ed Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Мах	
t _{F1-4}		0.25		0.25		0.26	ns
t _{F5-20}		1.01		1.12		1.25	ns
t _{F20+}		3.71		3.92		4.17	ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.36		2.22		2.35		ns
t _{CL}	1.36		2.26		2.35		ns
t _{CLRP}	0.18		0.18		0.19		ns
t _{PREP}	0.18		0.18		0.19		ns
t _{ESBCH}	1.36		2.26		2.35		ns
t _{ESBCL}	1.36		2.26		2.35		ns
t _{ESBWP}	1.17		1.38		1.56		ns
t _{ESBRP}	0.94		1.09		1.25		ns

Table 89. EP20K400E External Timing Parameters										
Symbol	-1 Speed Grade		-2 Spec	ed Grade	-3 Speed	Unit				
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.51		2.64		2.77		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	5.25	2.00	5.79	2.00	6.32	ns			
tINSUPLL	3.221		3.38		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
t _{outcopll}	0.50	2.25	0.50	2.45	-	-	ns			

Г

Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	d Grade	Unit	
	Min	Max	Min	Max	Min	Max		
t _{insubidir}	2.93		3.23		3.44		ns	
t _{inhbidir}	0.00		0.00		0.00		ns	
toutcobidir	2.00	5.25	2.00	5.79	2.00	6.32	ns	
t _{xzbidir}		5.95		6.77		7.12	ns	
t _{zxbidir}		5.95		6.77		7.12	ns	
t _{insubidirpll}	4.31		4.76		-		ns	
t _{inhbidirpll}	0.00		0.00		-		ns	
t _{outcobidirpll}	0.50	2.25	0.50	2.45	-	-	ns	
t _{xzbidirpll}		2.94		3.43		-	ns	
t _{zxbidirpll}		2.94		3.43		-	ns	

Tables 91 through 96 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K600E APEX 20KE devices.

Table 91. EP20K600E f _{MAX} LE Timing Microparameters										
Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade -3 Speed Grade		-3 Speed Grade				
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.16		0.16		0.17		ns			
t _H	0.29		0.33		0.37		ns			
t _{CO}		0.65		0.38		0.49	ns			
t _{LUT}		0.70		1.00		1.30	ns			

Т

Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{ESBARC}		1.78		2.02		1.95	ns	
t _{ESBSRC}		2.52		2.91		3.14	ns	
t _{ESBAWC}		3.52		4.11		4.40	ns	
t _{ESBSWC}		3.23		3.84		4.16	ns	
t _{ESBWASU}	0.62		0.67		0.61		ns	
t _{ESBWAH}	0.41		0.55		0.55		ns	
t _{ESBWDSU}	0.77		0.79		0.81		ns	
t _{ESBWDH}	0.41		0.55		0.55		ns	
t _{ESBRASU}	1.74		1.92		1.85		ns	
t _{ESBRAH}	0.00		0.01		0.23		ns	
t _{ESBWESU}	2.07		2.28		2.41		ns	
t _{ESBWEH}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	0.25		0.27		0.29		ns	
t _{ESBDATAH}	0.13		0.13		0.13		ns	
t _{ESBWADDRSU}	0.11		0.04		0.11		ns	
t _{ESBRADDRSU}	0.14		0.11		0.16		ns	
t _{ESBDATACO1}		1.29		1.50		1.63	ns	
t _{ESBDATACO2}		2.55		2.99		3.22	ns	
t _{ESBDD}		3.12		3.57		3.85	ns	
t _{PD}		1.84		2.13		2.32	ns	
t _{PTERMSU}	1.08		1.19		1.32		ns	
t _{PTERMCO}		1.31		1.53		1.66	ns	

Г

٦