E·XFL

Intel - EP20K160ETC144-3 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	640
Number of Logic Elements/Cells	6400
Total RAM Bits	81920
Number of I/O	88
Number of Gates	404000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k160etc144-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Additiona	al APEX 20K De	vice Features	Note (1)			
Feature	EP20K300E	EP20K400	EP20K400E	EP20K600E	EP20K1000E	EP20K1500E
Maximum system gates	728,000	1,052,000	1,052,000	1,537,000	1,772,000	2,392,000
Typical gates	300,000	400,000	400,000	600,000	1,000,000	1,500,000
LEs	11,520	16,640	16,640	24,320	38,400	51,840
ESBs	72	104	104	152	160	216
Maximum RAM bits	147,456	212,992	212,992	311,296	327,680	442,368
Maximum macrocells	1,152	1,664	1,664	2,432	2,560	3,456
Maximum user I/O pins	408	502	488	588	708	808

Note to Tables 1 and 2:

 The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates.

Additional Features

- Designed for low-power operation
 - 1.8-V and 2.5-V supply voltage (see Table 3)
 - MultiVolt[™] I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
 - ESB offering programmable power-saving mode

Table 3. APEX 20K Supply Voltages					
Feature	De	vice			
	EP20K100 EP20K200 EP20K400	EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E EP20K1500E			
Internal supply voltage (V _{CCINT})	2.5 V	1.8 V			
MultiVolt I/O interface voltage levels (V _{CCIO})	2.5 V, 3.3 V, 5.0 V	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)			

Note to Table 3:

(1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor.

Table 5. APEX 20K FineLine BGA Package Options & I/O Count Notes (1), (2)					
Device	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin
EP20K30E	93	128			
EP20K60E	93	196			
EP20K100		252			
EP20K100E	93	246			
EP20K160E			316		
EP20K200			382		
EP20K200E			376	376	
EP20K300E				408	
EP20K400				502 (3)	
EP20K400E				488 (3)	
EP20K600E				508 (3)	588
EP20K1000E				508 (3)	708
EP20K1500E					808

Notes to Tables 4 and 5:

Г

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

Table 6. APEX 20K QFP, BGA & PGA Package Sizes						
Feature	144-Pin TQFP	208-Pin QFP	240-Pin QFP	356-Pin BGA	652-Pin BGA	655-Pin PGA
Pitch (mm)	0.50	0.50	0.50	1.27	1.27	-
Area (mm ²)	484	924	1,218	1,225	2,025	3,906
$\begin{array}{l} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.4 × 30.4	34.9 × 34.9	35 × 35	45 × 45	62.5 × 62.5

Table 7. APEX 20K FineLine BGA Package Sizes					
Feature	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin
Pitch (mm)	1.00	1.00	1.00	1.00	1.00
Area (mm ²)	169	361	529	729	1,089
$\text{Length} \times \text{Width} \text{ (mm} \times \text{mm)}$	13 × 13	19×19	23 × 23	27 × 27	33 × 33

1

Logic Element

The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5.

Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE.

The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

Embedded System Block

The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software.

Table 10. APEX 20K Programmable Delay Chains				
Programmable Delays	Quartus II Logic Option			
Input pin to core delay	Decrease input delay to internal cells			
Input pin to input register delay	Decrease input delay to input register			
Core to output register delay	Decrease input delay to output register			
Output register t_{CO} delay	Increase delay to output pin			

The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices.

The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains					
Programmable Delays	Quartus II Logic Option				
Input Pin to Core Delay	Decrease input delay to internal cells				
Input Pin to Input Register Delay	Decrease input delay to input registers				
Core to Output Register Delay	Decrease input delay to output register				
Output Register t_{CO} Delay	Increase delay to output pin				
Clock Enable Delay	Increase clock enable delay				

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out.

MultiVolt I/O Interface

The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems.

Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support						
V _{CCIO} (V)	Input Signals (V) Output Signals (V)					(V)
	2.5	3.3	5.0	2.5	3.3	5.0
2.5	\checkmark	√ (1)	√(1)	~		
3.3	\checkmark	 Image: A set of the set of the	√ (1)	√ (2)	>	 Image: A set of the set of the

Table 12 summarizes 5.0-V tolerant APEX 20K MultiVolt I/O support.

Notes to Table 12:

- The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}.
- (2) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs.

Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pullup resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pullup resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor.

Clock Phase & Delay Adjustment

The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices.

Notes to Table 16:

- (1) To implement the ClockLock and ClockBoost circuitry with the Quartus II software, designers must specify the input frequency. The Quartus II software tunes the PLL in the ClockLock and ClockBoost circuitry to this frequency. The *f_{CLKDEV}* parameter specifies how much the incoming clock can differ from the specified frequency during device operation. Simulation does not reflect this parameter.
- (2) Twenty-five thousand parts per million (PPM) equates to 2.5% of input clock period.
- (3) During device configuration, the ClockLock and ClockBoost circuitry is configured before the rest of the device. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration because the t_{LOCK} value is less than the time required for configuration.
- (4) The t_{IITTER} specification is measured under long-term observation.

Tables 17 and 18 summarize the ClockLock and ClockBoost parameters for APEX 20KE devices.

Table 17. APEX 20KE ClockLock & ClockBoost Parameters Note (1)						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _R	Input rise time				5	ns
t _F	Input fall time				5	ns
t _{INDUTY}	Input duty cycle		40		60	%
t _{INJITTER}	Input jitter peak-to-peak				2% of input period	peak-to- peak
	Jitter on ClockLock or ClockBoost- generated clock				0.35% of output period	RMS
t _{outduty}	Duty cycle for ClockLock or ClockBoost-generated clock		45		55	%
t _{LOCK} <i>(2)_, (3)</i>	Time required for ClockLock or ClockBoost to acquire lock				40	μs

Table 18. APEX 20KE Clock Input & Output Parameters				of 2) Note	e (1)		
Symbol	Parameter	I/O Standard	-1X Spe	ed Grade	-2X Speed	l Grade	Units
			Min	Max	Min	Max	
f _{VCO} (4)	Voltage controlled oscillator operating range		200	500	200	500	MHz
f _{CLOCK0}	Clock0 PLL output frequency for internal use		1.5	335	1.5	200	MHz
f _{CLOCK1}	Clock1 PLL output frequency for internal use		20	335	20	200	MHz
f _{CLOCK0_EXT}	Output clock frequency for	3.3-V LVTTL	1.5	245	1.5	226	MHz
	external clock0 output	2.5-V LVTTL	1.5	234	1.5	221	MHz
		1.8-V LVTTL	1.5	223	1.5	216	MHz
		GTL+	1.5	205	1.5	193	MHz
		SSTL-2 Class I	1.5	158	1.5	157	MHz
		SSTL-2 Class II	1.5	142	1.5	142	MHz
		SSTL-3 Class I	1.5	166	1.5	162	MHz
		SSTL-3 Class II	1.5	149	1.5	146	MHz
		LVDS	1.5	420	1.5	350	MHz
f _{CLOCK1_EXT}	Output clock frequency for	3.3-V LVTTL	20	245	20	226	MHz
	external clock1 output	2.5-V LVTTL	20	234	20	221	MHz
		1.8-V LVTTL	20	223	20	216	MHz
		GTL+	20	205	20	193	MHz
		SSTL-2 Class I	20	158	20	157	MHz
		SSTL-2 Class II	20	142	20	142	MHz
		SSTL-3 Class I	20	166	20	162	MHz
		SSTL-3 Class II	20	149	20	146	MHz
		LVDS	20	420	20	350	MHz

The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices.

Table 20. APEX 20K Boundary-Scan Register Length				
Device	Boundary-Scan Register Length			
EP20K30E	420			
EP20K60E	624			
EP20K100	786			
EP20K100E	774			
EP20K160E	984			
EP20K200	1,176			
EP20K200E	1,164			
EP20K300E	1,266			
EP20K400	1,536			
EP20K400E	1,506			
EP20K600E	1,806			
EP20K1000E	2,190			
EP20K1500E	1 (1)			

Note to Table 20:

(1) This device does not support JTAG boundary scan testing.

Table 22 shows the JTAG timing parameters and values for APEX 20K devices.

Symbol	Parameter	Min	Max	Unit		
t _{JCP}	TCK clock period	100		ns		
t _{JCH}	TCK clock high time	50		ns		
t _{JCL}	TCK clock low time	50		ns		
t _{JPSU}	JTAG port setup time	20		ns		
t _{JPH}	JTAG port hold time	45		ns		
t _{JPCO}	JTAG port clock to output		25	ns		
t _{JPZX}	JTAG port high impedance to valid output		25	ns		
t _{JPXZ}	JTAG port valid output to high impedance		25	ns		
t _{JSSU}	Capture register setup time	20		ns		
t _{JSH}	Capture register hold time	45		ns		
t _{JSCO}	Update register clock to output		35	ns		
t _{JSZX}	Update register high impedance to valid output		35	ns		
t _{JSXZ}	Update register valid output to high impedance		35	ns		

Table 22. APEX 20K JTAG Timing Parameters & Values

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- Jam Programming & Test Language Specification

Generic Testing

Each APEX 20K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20K devices are made under conditions equivalent to those shown in Figure 32. Multiple test patterns can be used to configure devices during all stages of the production flow.

Table 24. APEX 20K 5.0-V Tolerant Device Recommended Operating Conditions Note (2)							
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(4), (5)	2.375 (2.375)	2.625 (2.625)	V		
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5)	3.00 (3.00)	3.60 (3.60)	V		
	Supply voltage for output buffers, 2.5-V operation	(4), (5)	2.375 (2.375)	2.625 (2.625)	V		
VI	Input voltage	(3), (6)	-0.5	5.75	V		
Vo	Output voltage		0	V _{CCIO}	V		
ТJ	Junction temperature	For commercial use	0	85	°C		
		For industrial use	-40	100	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

Table 25. APEX 20K 5.0-V Tolerant Device DC Operating Conditions (Part 1 of 2) Notes (2), (7), (8)						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		1.7, 0.5 × V _{CCIO} (9)		5.75	V
V _{IL}	Low-level input voltage		-0.5		$0.8, 0.3 \times V_{CCIO}$	V
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	2.4			V
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	V _{CCIO} - 0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (10)	$0.9 \times V_{CCIO}$			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	2.1			V
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	2.0			V
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (10)$	1.7			V

Figure 40. Synchronous Bidirectional Pin External Timing

Notes to Figure 40:

- (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software.
- (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells= Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells= ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade.

Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68.

Table 31. APEX 20K f _{MAX} Timing Parameters (Part 1 of 2)				
Symbol	Symbol Parameter			
t _{SU}	LE register setup time before clock			
t _H	LE register hold time after clock			
t _{CO}	LE register clock-to-output delay			
t _{LUT}	LUT delay for data-in			
t _{ESBRC}	ESB Asynchronous read cycle time			
t _{ESBWC}	ESB Asynchronous write cycle time			
t _{ESBWESU}	ESB WE setup time before clock when using input register			
t _{ESBDATASU}	ESB data setup time before clock when using input register			
t _{ESBDATAH}	ESB data hold time after clock when using input register			
t _{ESBADDRSU}	ESB address setup time before clock when using input registers			
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers			

Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2)				
Symbol	Symbol Parameter			
t _{ESBDATACO2}	ESB clock-to-output delay without output registers			
t _{ESBDD}	ESB data-in to data-out delay for RAM mode			
t _{PD}	ESB macrocell input to non-registered output			
t _{PTERMSU}	ESB macrocell register setup time before clock			
t _{PTERMCO}	ESB macrocell register clock-to-output delay			
t _{F1-4}	Fanout delay using local interconnect			
t _{F5-20}	Fanout delay using MegaLab Interconnect			
t _{F20+}	Fanout delay using FastTrack Interconnect			
t _{CH}	Minimum clock high time from clock pin			
t _{CL}	Minimum clock low time from clock pin			
t _{CLRP}	LE clear pulse width			
t _{PREP}	LE preset pulse width			
t _{ESBCH}	Clock high time			
t _{ESBCL}	Clock low time			
t _{ESBWP}	Write pulse width			
t _{ESBRP}	Read pulse width			

Tables 32 and 33 describe APEX 20K external timing parameters.

Table 32. APEX 20K External Timing Parameters Note (1)				
Symbol	Clock Parameter			
t _{INSU}	Setup time with global clock at IOE register			
t _{INH}	Hold time with global clock at IOE register			
t _{оитсо}	Clock-to-output delay with global clock at IOE register			

Table 33. APEX 20K External Bidirectional Timing Parameters Note (1)					
Symbol	Parameter	Conditions			
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at same-row or same- column LE register				
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same- column LE register				
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 10 pF			
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 10 pF			
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate = off	C1 = 10 pF			

Table 80. EP20K300E f _{MAX} ESB Timing Microparameters							
Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.79		2.44		3.25	ns
t _{ESBSRC}		2.40		3.12		4.01	ns
t _{ESBAWC}		3.41		4.65		6.20	ns
t _{ESBSWC}		3.68		4.68		5.93	ns
t _{ESBWASU}	1.55		2.12		2.83		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.71		2.33		3.11		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.72		2.34		3.13		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.63		2.36		3.28		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.07		0.39		0.80		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.27		0.67		1.17		ns
t _{ESBRADDRSU}	0.34		0.75		1.28		ns
t _{ESBDATACO1}		1.03		1.20		1.40	ns
t _{ESBDATACO2}		2.33		3.18		4.24	ns
t _{ESBDD}		3.41		4.65		6.20	ns
t _{PD}		1.68		2.29		3.06	ns
t _{PTERMSU}	0.96		1.48		2.14		ns
t _{PTERMCO}		1.05		1.22		1.42	ns

Table 81. EP20K300E f _{MAX} Routing Delays								
Symbol	-1		-1 -2		-2	-3		Unit
	Min	Max	Min	Max	Min	Max		
t _{F1-4}		0.22		0.24		0.26	ns	
t _{F5-20}		1.33		1.43		1.58	ns	
t _{F20+}		3.63		3.93		4.35	ns	

Altera Corporation

SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files.

Configuration Schemes

The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up.

Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device.

Table 111. Data Sources for Configuration				
Configuration Scheme	Data Source			
Configuration device	EPC1, EPC2, EPC16 configuration devices			
Passive serial (PS)	MasterBlaster or ByteBlasterMV download cable or serial data source			
Passive parallel asynchronous (PPA)	Parallel data source			
Passive parallel synchronous (PPS)	Parallel data source			
JTAG	MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File			

For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*)

Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information

Version 4.1

APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes:

- *t*_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104.
- Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.