Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 832 | | Number of Logic Elements/Cells | 8320 | | Total RAM Bits | 106496 | | Number of I/O | 277 | | Number of Gates | 526000 | | Voltage - Supply | 2.375V ~ 2.625V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 356-LBGA | | Supplier Device Package | 356-BGA (35x35) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k200bc356-3v | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions. Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs. If both the rising and falling edges of a clock are used in a LAB, both LAB-wide clock signals are used. The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit. Figure 4. LAB Control Signal Generation #### Notes to Figure 4: - (1) APEX 20KE devices have four dedicated clocks. - (2) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB. - (3) The SYNCCLR signal can be generated by the local interconnect or global signals. Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output. The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure. #### Carry Chain The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions. The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLABTM structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 6 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carryin signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures. Figure 6. APEX 20K Carry Chain | Source | | Destination | | | | | | | | |----------------------------------|----------------|-------------------|----------|----------|-----------------------|-------------------------|----------------------------------|-------------------------------------|-------------------------| | | Row
I/O Pin | Column
I/O Pin | LE | ESB | Local
Interconnect | MegaLAB
Interconnect | Row
FastTrack
Interconnect | Column
FastTrack
Interconnect | FastRow
Interconnect | | Row I/O Pin | | | | | ✓ | ✓ | ✓ | ✓ | | | Column I/O
Pin | | | | | | | | ✓ | ✓ (1) | | LE | | | | | ✓ | ✓ | ✓ | ✓ | | | ESB | | | | | ✓ | ✓ | ✓ | ✓ | | | Local
Interconnect | ✓ | ✓ | ✓ | ✓ | | | | | | | MegaLAB
Interconnect | | | | | ~ | | | | | | Row
FastTrack
Interconnect | | | | | | ✓ | | ✓ | | | Column | | | | | | ✓ | ✓ | | | | FastTrack
Interconnect | | | | | | | | | | | FastRow
Interconnect | | | | | ✓ (1) | | | | | Note to Table 9: (1) This connection is supported in APEX 20KE devices only. ## **Product-Term Logic** The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals. In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode. The programmable register also supports an asynchronous clear function. Within the ESB, two asynchronous clears are generated from global signals and the local interconnect. Each macrocell can either choose between the two asynchronous clear signals or choose to not be cleared. Either of the two clear signals can be inverted within the ESB. Figure 15 shows the ESB control logic when implementing product-terms. Dedicated Clocks Global Signals Local Interconnect Local Interconnect Local Interconnect Local Interconnect CLR1 CLKENA2 CLK1 CLKENA1 CLR₂ Figure 15. ESB Product-Term Mode Control Logic Note to Figure 15: (1) APEX 20KE devices have four dedicated clocks. ### Parallel Expanders Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 32 product terms to feed the macrocell OR logic directly, with two product terms provided by the macrocell and 30 parallel expanders provided by the neighboring macrocells in the ESB. The Quartus II software Compiler can allocate up to 15 sets of up to two parallel expanders per set to the macrocells automatically. Each set of two parallel expanders incurs a small, incremental timing delay. Figure 16 shows the APEX 20K parallel expanders. ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock. ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic. When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays. To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18. ## Input/Output Clock Mode The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode. Figure 21. ESB in Input/Output Clock Mode Note (1) Notes to Figure 21: - (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. - (2) APEX 20KE devices have four dedicated clocks. # Single-Port Mode The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22. ## Implementing Logic in ROM In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate. ## **Programmable Speed/Power Control** APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo BitTM option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current. Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power. # I/O Structure The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently. The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. Figure 30. Specifications for the Incoming & Generated Clocks Note (1) *Note to Figure 30:* (1) The tl parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period. Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices. | Symbol | Parameter | Min | Max | Unit | |-----------------------|--------------------------------------------------------------------------------------------------------------------------|-----|------------|------| | f _{OUT} | Output frequency | 25 | 180 | MHz | | f _{CLK1} (1) | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 25 | 180 (1) | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | 16 | 90 | MHz | | f _{CLK4} | Input clock frequency (ClockBoost clock multiplication factor equals 4) | 10 | 48 | MHz | | ^t OUTDUTY | Duty cycle for ClockLock/ClockBoost-generated clock | 40 | 60 | % | | f _{CLKDEV} | Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2) | | 25,000 (3) | PPM | | t _R | Input rise time | | 5 | ns | | t _F | Input fall time | | 5 | ns | | t _{LOCK} | Time required for ClockLock/ClockBoost to acquire lock (4) | | 10 | μs | The APEX 20K device instruction register length is 10 bits. The APEX 20K device USERCODE register length is 32 bits. Tables 20 and 21 show the boundary-scan register length and device IDCODE information for APEX 20K devices. | Table 20. APEX 20K Boundary-Scan Register Length | | | | |--------------------------------------------------|-------------------------------|--|--| | Device | Boundary-Scan Register Length | | | | EP20K30E | 420 | | | | EP20K60E | 624 | | | | EP20K100 | 786 | | | | EP20K100E | 774 | | | | EP20K160E | 984 | | | | EP20K200 | 1,176 | | | | EP20K200E | 1,164 | | | | EP20K300E | 1,266 | | | | EP20K400 | 1,536 | | | | EP20K400E | 1,506 | | | | EP20K600E | 1,806 | | | | EP20K1000E | 2,190 | | | | EP20K1500E | 1 (1) | | | #### Note to Table 20: (1) This device does not support JTAG boundary scan testing. Table 22 shows the JTAG timing parameters and values for APEX 20K devices | Table 2 | Table 22. APEX 20K JTAG Timing Parameters & Values | | | | | | |-------------------|----------------------------------------------------|-----|-----|------|--|--| | Symbol | Parameter | Min | Max | Unit | | | | t _{JCP} | TCK clock period | 100 | | ns | | | | t _{JCH} | TCK clock high time | 50 | | ns | | | | t_{JCL} | TCK clock low time | 50 | | ns | | | | t _{JPSU} | JTAG port setup time | 20 | | ns | | | | t _{JPH} | JTAG port hold time | 45 | | ns | | | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | | | t _{JSSU} | Capture register setup time | 20 | | ns | | | | t _{JSH} | Capture register hold time | 45 | | ns | | | | t _{JSCO} | Update register clock to output | | 35 | ns | | | | t _{JSZX} | Update register high impedance to valid output | | 35 | ns | | | | t _{JSXZ} | Update register valid output to high impedance | | 35 | ns | | | For more information, see the following documents: - Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices) - Jam Programming & Test Language Specification # **Generic Testing** Each APEX 20K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20K devices are made under conditions equivalent to those shown in Figure 32. Multiple test patterns can be used to configure devices during all stages of the production flow. | Table 2 | Table 26. APEX 20K 5.0-V Tolerant Device CapacitanceNotes (2), (14) | | | | | | |--------------------|---------------------------------------------------------------------|-------------------------------------|-----|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | #### Notes to Tables 23 through 26: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) All APEX 20K devices are 5.0-V tolerant. - (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (4) Numbers in parentheses are for industrial-temperature-range devices. - (5) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (6) All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (7) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ or 3.3 V. - (8) These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on page 62. - (9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 33 on page 68. - (10) The I_{OH} parameter refers to high-level TTL, PCI or CMOS output current. - (11) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (12) This value is specified for normal device operation. The value may vary during power-up. - (13) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO} . - (14) Capacitance is sample-tested only. Tables 27 through 30 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KE devices. | Table 2 | Table 27. APEX 20KE Device Absolute Maximum Ratings Note (1) | | | | | | |------------------|--------------------------------------------------------------|------------------------------------------------|------|-----|------|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | V_{CCINT} | Supply voltage | With respect to ground (2) | -0.5 | 2.5 | V | | | V_{CCIO} | | | -0.5 | 4.6 | V | | | V _I | DC input voltage | | -0.5 | 4.6 | V | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | T _{STG} | Storage temperature | No bias | -65 | 150 | °C | | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | °C | | | TJ | Junction temperature | PQFP, RQFP, TQFP, and BGA packages, under bias | | 135 | ° C | | | | | Ceramic PGA packages, under bias | | 150 | °C | | Figure 37. APEX 20KE f_{MAX} Timing Model Figure 40. Synchronous Bidirectional Pin External Timing #### Notes to Figure 40: - (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software. - (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells=Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells=ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade. Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68. | Table 31. APEX 20K f _{MAX} Timing Parameters (Part 1 of 2) | | | | |---------------------------------------------------------------------|----------------------------------------------------------------|--|--| | Symbol | Parameter | | | | t _{SU} | LE register setup time before clock | | | | t _H | LE register hold time after clock | | | | t _{CO} | LE register clock-to-output delay | | | | t _{LUT} | LUT delay for data-in | | | | t _{ESBRC} | ESB Asynchronous read cycle time | | | | t _{ESBWC} | ESB Asynchronous write cycle time | | | | t _{ESBWESU} | ESB WE setup time before clock when using input register | | | | t _{ESBDATASU} | ESB data setup time before clock when using input register | | | | t _{ESBDATAH} | ESB data hold time after clock when using input register | | | | t _{ESBADDRSU} | ESB address setup time before clock when using input registers | | | | t _{ESBDATACO1} | ESB clock-to-output delay when using output registers | | | | Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2) | | | | |---------------------------------------------------------------------|----------------------------------------------------|---|--| | Symbol | Parameter | | | | t _{ESBDATACO2} | ESB clock-to-output delay without output registers | | | | t _{ESBDD} | ESB data-in to data-out delay for RAM mode | | | | t _{PD} | ESB macrocell input to non-registered output | - | | | t _{PTERMSU} | ESB macrocell register setup time before clock | | | | t _{PTERMCO} | ESB macrocell register clock-to-output delay | - | | | t _{F1-4} | Fanout delay using local interconnect | | | | t _{F5-20} | Fanout delay using MegaLab Interconnect | | | | t _{F20+} | Fanout delay using FastTrack Interconnect | | | | t _{CH} | Minimum clock high time from clock pin | | | | t _{CL} | Minimum clock low time from clock pin | | | | t _{CLRP} | LE clear pulse width | | | | t _{PREP} | LE preset pulse width | | | | t _{ESBCH} | Clock high time | | | | t _{ESBCL} | Clock low time | | | | t _{ESBWP} | Write pulse width | | | | t _{ESBRP} | Read pulse width | | | Tables 32 and 33 describe APEX 20K external timing parameters. | Table 32. APEX 20K External Timing Parameters Note (1) | | | | |--------------------------------------------------------|---------------------------------------------------------|--|--| | Symbol | Clock Parameter | | | | t _{INSU} | Setup time with global clock at IOE register | | | | t _{INH} | Hold time with global clock at IOE register | | | | tоитсо | Clock-to-output delay with global clock at IOE register | | | | Table 33. APEX 20K External Bidirectional Timing Parameters Note (1) | | | | |----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|--| | Symbol | Parameter | Conditions | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 10 pF | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | C1 = 10 pF | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | C1 = 10 pF | | | Table 36. APEX 20KE Routing Timing Microparameters Note (1) | | | | | |-------------------------------------------------------------|----------------------------------------------------|--|--|--| | Symbol | Symbol Parameter | | | | | t _{F1-4} | Fanout delay using Local Interconnect | | | | | t _{F5-20} | Fanout delay estimate using MegaLab Interconnect | | | | | t _{F20+} | Fanout delay estimate using FastTrack Interconnect | | | | #### Note to Table 36: (1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. | Table 37. APEX 20KE Functional Timing Microparameters | | | | | | | |-------------------------------------------------------|----------------------------------------|--|--|--|--|--| | Symbol | Parameter | | | | | | | TCH | Minimum clock high time from clock pin | | | | | | | TCL | Minimum clock low time from clock pin | | | | | | | TCLRP | LE clear Pulse Width | | | | | | | TPREP | LE preset pulse width | | | | | | | TESBCH | Clock high time for ESB | | | | | | | TESBCL | Clock low time for ESB | | | | | | | TESBWP | Write pulse width | | | | | | | TESBRP | Read pulse width | | | | | | Tables 38 and 39 describe the APEX 20KE external timing parameters. | Table 38. APEX 20KE External Timing Parameters Note (1) | | | | | | | | |---------------------------------------------------------|----------------------------------------------------------------|------------|--|--|--|--|--| | Symbol | Symbol Clock Parameter | | | | | | | | t _{INSU} | Setup time with global clock at IOE input register | | | | | | | | t _{INH} | Hold time with global clock at IOE input register | | | | | | | | t _{outco} | Clock-to-output delay with global clock at IOE output register | C1 = 10 pF | | | | | | | t _{INSUPLL} | Setup time with PLL clock at IOE input register | | | | | | | | t _{INHPLL} | Hold time with PLL clock at IOE input register | | | | | | | | t _{OUTCOPLL} | Clock-to-output delay with PLL clock at IOE output register | C1 = 10 pF | | | | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Units | | |-------------------------|----------------|-----|----------------|-----|----------------|-----|-------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | 0.1 | | 0.3 | | 0.6 | | ns | | | t _H | 0.5 | | 0.8 | | 0.9 | | ns | | | t _{co} | | 0.1 | | 0.4 | | 0.6 | ns | | | t _{LUT} | | 1.0 | | 1.2 | | 1.4 | ns | | | t _{ESBRC} | | 1.7 | | 2.1 | | 2.4 | ns | | | t _{ESBWC} | | 5.7 | | 6.9 | | 8.1 | ns | | | t _{ESBWESU} | 3.3 | | 3.9 | | 4.6 | | ns | | | t _{ESBDATASU} | 2.2 | | 2.7 | | 3.1 | | ns | | | t _{ESBDATAH} | 0.6 | | 0.8 | | 0.9 | | ns | | | t _{ESBADDRSU} | 2.4 | | 2.9 | | 3.3 | | ns | | | t _{ESBDATACO1} | | 1.3 | | 1.6 | | 1.8 | ns | | | t _{ESBDATACO2} | | 2.5 | | 3.1 | | 3.6 | ns | | | t _{ESBDD} | | 2.5 | | 3.3 | | 3.6 | ns | | | t _{PD} | | 2.5 | | 3.1 | | 3.6 | ns | | | t _{PTERMSU} | 1.7 | | 2.1 | | 2.4 | | ns | | | t _{PTERMCO} | | 1.0 | | 1.2 | | 1.4 | ns | | | t _{F1-4} | | 0.4 | | 0.5 | | 0.6 | ns | | | t _{F5-20} | | 2.6 | | 2.8 | | 2.9 | ns | | | t _{F20+} | | 3.7 | | 3.8 | | 3.9 | ns | | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{CLRP} | 0.5 | | 0.6 | | 0.8 | | ns | | | t _{PREP} | 0.5 | | 0.5 | | 0.5 | | ns | | | t _{ESBCH} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{ESBCL} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{ESBWP} | 1.5 | | 1.9 | | 2.2 | | ns | | | t _{ESBRP} | 1.0 | | 1.2 | | 1.4 | | ns | | Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices. | Table 43. EP20 | Table 43. EP20K100 External Timing Parameters | | | | | | | | | |------------------------|-----------------------------------------------|----------------|-----|----------------|-----|----------------|----|--|--| | Symbol | -1 Spe | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | | | | | Min | Max | Min | Max | Min | Max | 7 | | | | t _{INSU} (1) | 2.3 | | 2.8 | | 3.2 | | ns | | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{OUTCO} (1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | | | t _{INSU} (2) | 1.1 | | 1.2 | | - | | ns | | | | t _{INH} (2) | 0.0 | | 0.0 | | - | | ns | | | | t _{OUTCO} (2) | 0.5 | 2.7 | 0.5 | 3.1 | _ | 4.8 | ns | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |----------------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | 7 | | t _{INSUBIDIR} (1) | 2.3 | | 2.8 | | 3.2 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | toutcobidir
(1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.0 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir
(2) | 0.5 | 2.7 | 0.5 | 3.1 | - | - | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 45. EP20 | Table 45. EP20K200 External Timing Parameters | | | | | | | | | | |------------------------|---|-----|----------------|-----|----------------|-----|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{INSU} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | | t _{OUTCO} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | | | | t _{INSU} (2) | 1.1 | | 1.2 | | - | | ns | | | | | t _{INH} (2) | 0.0 | | 0.0 | | - | | ns | | | | | t _{OUTCO} (2) | 0.5 | 2.7 | 0.5 | 3.1 | _ | _ | ns | | | | | Symbol | -1 | | -2 | | -3 | | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.83 | | 2.57 | | 3.79 | ns | | t _{ESBSRC} | | 2.46 | | 3.26 | | 4.61 | ns | | t _{ESBAWC} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{ESBSWC} | | 3.77 | | 4.90 | | 6.79 | ns | | t _{ESBWASU} | 1.59 | | 2.23 | | 3.29 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.75 | | 2.46 | | 3.62 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.76 | | 2.47 | | 3.64 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.68 | | 2.49 | | 3.87 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.08 | | 0.43 | | 1.04 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.29 | | 0.72 | | 1.46 | | ns | | t _{ESBRADDRSU} | 0.36 | | 0.81 | | 1.58 | | ns | | t _{ESBDATACO1} | | 1.06 | | 1.24 | | 1.55 | ns | | t _{ESBDATACO2} | | 2.39 | | 3.35 | | 4.94 | ns | | t _{ESBDD} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{PD} | | 1.72 | | 2.41 | | 3.56 | ns | | t _{PTERMSU} | 0.99 | | 1.56 | | 2.55 | | ns | | t _{PTERMCO} | | 1.07 | | 1.26 | | 1.08 | ns | | Table 69. EP20K160E f _{MAX} Routing Delays | | | | | | | | | | | |---|-----|------|-----|------|-----|------|------|--|--|--| | Symbol | -1 | | -2 | | -3 | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.25 | | 0.26 | | 0.28 | ns | | | | | t _{F5-20} | | 1.00 | | 1.18 | | 1.35 | ns | | | | | t _{F20+} | | 1.95 | | 2.19 | | 2.30 | ns | | | | | Symbol | - | -1 | | -2 | | -3 | | |--------------------|------|-----|------|-----|------|-----|----| | | Min | Max | Min | Max | Min | Max | 7 | | t _{CH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{ESBCH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBCL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBWP} | 1.15 | | 1.45 | | 1.73 | | ns | | t _{ESBRP} | 0.93 | | 1.15 | | 1.38 | | ns | | Symbol | -1 | | - | -2 | | -3 | | |----------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.23 | | 2.34 | | 2.47 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.07 | 2.00 | 5.59 | 2.00 | 6.13 | ns | | t _{INSUPLL} | 2.12 | | 2.07 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | toutcople | 0.50 | 3.00 | 0.50 | 3.35 | - | - | ns |