

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	8320
Total RAM Bits	106496
Number of I/O	277
Number of Gates	526000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k200bi356-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Flexible clock management circuitry with up to four phase-locked loops (PLLs)
 - Built-in low-skew clock tree
 - Up to eight global clock signals
 - ClockLock[®] feature reducing clock delay and skew
 - ClockBoost[®] feature providing clock multiplication and division
 - ClockShift™ programmable clock phase and delay shifting

Powerful I/O features

- Compliant with peripheral component interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V operation at 33 or 66 MHz and 32 or 64 bits
- Support for high-speed external memories, including DDR SDRAM and ZBT SRAM (ZBT is a trademark of Integrated Device Technology, Inc.)
- Bidirectional I/O performance ($t_{CO} + t_{SU}$) up to 250 MHz
- LVDS performance up to 840 Mbits per channel
- Direct connection from I/O pins to local interconnect providing fast t_{CO} and t_{SU} times for complex logic
- MultiVolt I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
- Programmable clamp to V_{CCIO}
- Individual tri-state output enable control for each pin
- Programmable output slew-rate control to reduce switching noise
- Support for advanced I/O standards, including low-voltage differential signaling (LVDS), LVPECL, PCI-X, AGP, CTT, stubseries terminated logic (SSTL-3 and SSTL-2), Gunning transceiver logic plus (GTL+), and high-speed terminated logic (HSTL Class I)
- Pull-up on I/O pins before and during configuration

Advanced interconnect structure

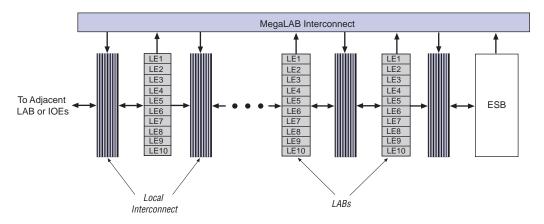
- Four-level hierarchical FastTrack[®] Interconnect structure providing fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect

Advanced packaging options

- Available in a variety of packages with 144 to 1,020 pins (see Tables 4 through 7)
- FineLine BGA® packages maximize board space efficiency

Advanced software support

 Software design support and automatic place-and-route provided by the Altera® Quartus® II development system for


Feature	APEX 20K Devices	APEX 20KE Devices
MultiCore system integration	Full support	Full support
SignalTap logic analysis	Full support	Full support
32/64-Bit, 33-MHz PCI	Full compliance in -1, -2 speed grades	Full compliance in -1, -2 speed grades
32/64-Bit, 66-MHz PCI	-	Full compliance in -1 speed grade
MultiVolt I/O	2.5-V or 3.3-V V _{CCIO} V _{CCIO} selected for device Certain devices are 5.0-V tolerant	1.8-V, 2.5-V, or 3.3-V V _{CCIO} V _{CCIO} selected block-by-block 5.0-V tolerant with use of external resistor
ClockLock support	Clock delay reduction 2× and 4× clock multiplication	Clock delay reduction $m/(n \times v)$ or $m/(n \times k)$ clock multiplication Drive ClockLock output off-chip External clock feedback ClockShift LVDS support Up to four PLLs ClockShift, clock phase adjustment
Dedicated clock and input pins	Six	Eight
I/O standard support	2.5-V, 3.3-V, 5.0-V I/O 3.3-V PCI Low-voltage complementary metal-oxide semiconductor (LVCMOS) Low-voltage transistor-to-transistor logic (LVTTL)	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O 2.5-V I/O 3.3-V PCI and PCI-X 3.3-V Advanced Graphics Port (AGP) Center tap terminated (CTT) GTL+ LVCMOS LVTTL True-LVDS and LVPECL data pins (in EP20K300E and larger devices) LVDS and LVPECL signaling (in all BGA and FineLine BGA devices) LVDS and LVPECL data pins up to 156 Mbps (in -1 speed grade devices) HSTL Class I PCI-X SSTL-2 Class I and II SSTL-3 Class I and II
Memory support	Dual-port RAM FIFO RAM ROM	CAM Dual-port RAM FIFO RAM ROM

APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins.

MegaLAB Structure

APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.

Figure 2. MegaLAB Structure

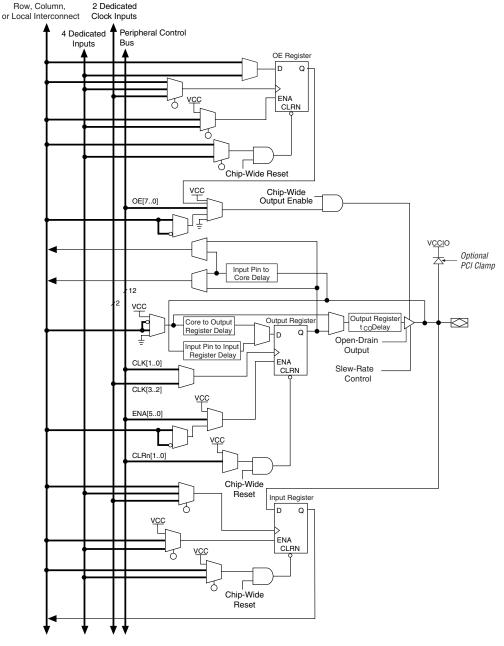


Figure 25. APEX 20K Bidirectional I/O Registers Note (1)

Note to Figure 25:

(1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

Advanced I/O Standard Support

APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II.

For more information on I/O standards supported by APEX 20KE devices, see *Application Note 117 (Using Selectable I/O Standards in Altera Devices)*.

The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support.

Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks.

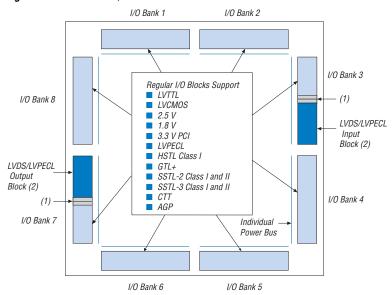


Figure 29. APEX 20KE I/O Banks

Notes to Figure 29:

- For more information on placing I/O pins in LVDS blocks, refer to the Guidelines for Using LVDS Blocks section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V.

Power Sequencing & Hot Socketing

Because APEX 20K and APEX 20KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies may be powered in any order.

For more information, please refer to the "Power Sequencing Considerations" section in the *Configuring APEX 20KE & APEX 20KC Devices* chapter of the *Configuration Devices Handbook*.

Signals can be driven into APEX 20K devices before and during power-up without damaging the device. In addition, APEX 20K devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20K and APEX 20KE devices operate as specified by the user.

Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out.

MultiVolt I/O Interface

The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems.

Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support								
V _{CCIO} (V)	ccio (V) Input Signals (V) Output Signals (V)							
	2.5	3.3	5.0	2.5	3.3	5.0		
2.5	✓	√ (1)	√ (1)	✓				
3.3	✓	✓	√ (1)	√ (2)	✓	✓		

Notes to Table 12:

- (1) The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO} .
- (2) When $V_{\rm CCIO}$ = 3.3 V, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs.

Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a $V_{\rm IH}$ of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The $I_{\rm OL}$ current specification should be considered when selecting a pull-up resistor.

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

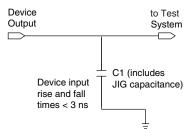

All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration.

Table 19. APEX 20K JT	Table 19. APEX 20K JTAG Instructions				
JTAG Instruction	Description				
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer.				
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.				
BYPASS (1)	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.				
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.				
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.				
ICR Instructions	Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster TM or ByteBlasterMV TM download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor.				
SignalTap Instructions (1)	Monitors internal device operation with the SignalTap embedded logic analyzer.				

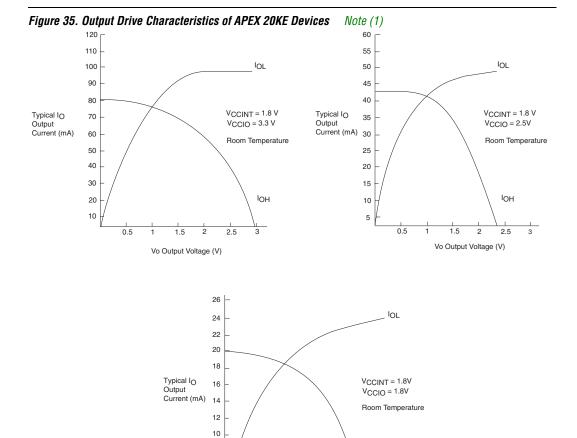
Note to Table 19:

(1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions.

Figure 32. APEX 20K AC Test Conditions Note (1)

Note to Figure 32:

(1) Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.


Operating Conditions

Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices.

Table 2	Table 23. APEX 20K 5.0-V Tolerant Device Absolute Maximum Ratings Notes (1), (2)								
Symbol	Parameter	Conditions	Min	Max	Unit				
V _{CCINT}	Supply voltage	With respect to ground (3)	-0.5	3.6	V				
V _{CCIO}			-0.5	4.6	V				
V _I	DC input voltage		-2.0	5.75	V				
I _{OUT}	DC output current, per pin		-25	25	mA				
T _{STG}	Storage temperature	No bias	-65	150	° C				
T _{AMB}	Ambient temperature	Under bias	-65	135	° C				
TJ	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	° C				
		Ceramic PGA packages, under bias		150	°C				

		Pevice Recommended Operating Conditio	1	, B#	
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(4), (5)	2.375 (2.375)	2.625 (2.625)	٧
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5)	3.00 (3.00)	3.60 (3.60)	٧
	Supply voltage for output buffers, 2.5-V operation	(4), (5)	2.375 (2.375)	2.625 (2.625)	V
V _I	Input voltage	(3), (6)	-0.5	5.75	V
Vo	Output voltage		0	V _{CCIO}	V
T _J	Junction temperature	For commercial use	0	85	°C
		For industrial use	-40	100	°C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level input voltage		1.7, 0.5 × V _{CCIO} (9)		5.75	٧
V _{IL}	Low-level input voltage		-0.5		0.8, 0.3 × V _{CCIO} (9)	٧
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V (10)	2.4			٧
voltage	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V (10)	V _{CCIO} - 0.2			٧
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (10)	0.9 × V _{CCIO}			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (10)	2.1			٧
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (10)	2.0			٧
		I _{OH} = -2 mA DC, V _{CCIO} = 2.30 V (10)	1.7			٧

8

4 2

0.5

Figure 35 shows the output drive characteristics of APEX 20KE devices.

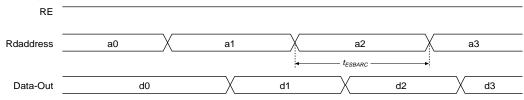
Note to Figure 35:

(1) These are transient (AC) currents.

Timing Model

The high-performance FastTrack and MegaLAB interconnect routing resources ensure predictable performance, accurate simulation, and accurate timing analysis. This predictable performance contrasts with that of FPGAs, which use a segmented connection scheme and therefore have unpredictable performance.

Vo Output Voltage (V)


IOH

2.0

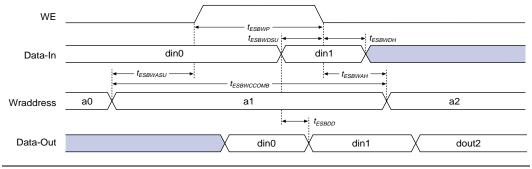

Figures 38 and 39 show the asynchronous and synchronous timing waveforms, respectively, for the ESB macroparameters in Table 31.

Figure 38. ESB Asynchronous Timing Waveforms

ESB Asynchronous Write

Note to Tables 32 and 33:

(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model.

Table 34. APEX 20KE LE Timing Microparameters							
Symbol Parameter							
t _{SU}	LE register setup time before clock						
t _H	LE register hold time after clock						
t _{CO}	LE register clock-to-output delay						
t _{LUT}	LUT delay for data-in to data-out						

Table 35. APE.	X 20KE ESB Timing Microparameters
Symbol	Parameter
t _{ESBARC}	ESB Asynchronous read cycle time
t _{ESBSRC}	ESB Synchronous read cycle time
t _{ESBAWC}	ESB Asynchronous write cycle time
t _{ESBSWC}	ESB Synchronous write cycle time
t _{ESBWASU}	ESB write address setup time with respect to WE
t _{ESBWAH}	ESB write address hold time with respect to WE
t _{ESBWDSU}	ESB data setup time with respect to WE
t _{ESBWDH}	ESB data hold time with respect to WE
t _{ESBRASU}	ESB read address setup time with respect to RE
t _{ESBRAH}	ESB read address hold time with respect to RE
t _{ESBWESU}	ESB WE setup time before clock when using input register
t _{ESBWEH}	ESB WE hold time after clock when using input register
t _{ESBDATASU}	ESB data setup time before clock when using input register
t _{ESBDATAH}	ESB data hold time after clock when using input register
t _{ESBWADDRSU}	ESB write address setup time before clock when using input registers
t _{ESBRADDRSU}	ESB read address setup time before clock when using input registers
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers
t _{ESBDATACO2}	ESB clock-to-output delay without output registers
t _{ESBDD}	ESB data-in to data-out delay for RAM mode
t _{PD}	ESB Macrocell input to non-registered output
t _{PTERMSU}	ESB Macrocell register setup time before clock
t _{PTERMCO}	ESB Macrocell register clock-to-output delay

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	1
t _{INSUBIDIR}	2.77		2.91		3.11		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	4.84	2.00	5.31	2.00	5.81	ns
t _{XZBIDIR}		6.47		7.44		8.65	ns
t _{ZXBIDIR}		6.47		7.44		8.65	ns
t _{INSUBIDIRPLL}	3.44		3.24		-		ns
tinhbidirpll	0.00		0.00		-		ns
^t OUTCOBIDIRPLL	0.50	3.37	0.50	3.69	-	-	ns
t _{XZBIDIRPLL}		5.00		5.82		-	ns
tzxbidirpll		5.00		5.82		-	ns

Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices.

Table 61. EP20K100E f _{MAX} LE Timing Microparameters									
Symbol	-	1	-	2	-1	3	Unit		
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.25		0.25		0.25		ns		
t _H	0.25		0.25		0.25		ns		
t _{CO}		0.28		0.28		0.34	ns		
t _{LUT}		0.80		0.95		1.13	ns		

Table 62. EP20K	I GOL IMAX LOL	, iming mid	1		T		1
Symbol	-	1		-2	-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.61		1.84		1.97	ns
t _{ESBSRC}		2.57		2.97		3.20	ns
t _{ESBAWC}		0.52		4.09		4.39	ns
t _{ESBSWC}		3.17		3.78		4.09	ns
t _{ESBWASU}	0.56		6.41		0.63		ns
t _{ESBWAH}	0.48		0.54		0.55		ns
t _{ESBWDSU}	0.71		0.80		0.81		ns
t _{ESBWDH}	.048		0.54		0.55		ns
t _{ESBRASU}	1.57		1.75		1.87		ns
t _{ESBRAH}	0.00		0.00		0.20		ns
t _{ESBWESU}	1.54		1.72		1.80		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.16		-0.20		-0.20		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.12		0.08		0.13		ns
t _{ESBRADDRSU}	0.17		0.15		0.19		ns
t _{ESBDATACO1}		1.20		1.39		1.52	ns
t _{ESBDATACO2}		2.54		2.99		3.22	ns
t _{ESBDD}		3.06		3.56		3.85	ns
t _{PD}		1.73		2.02		2.20	ns
t _{PTERMSU}	1.11		1.26		1.38		ns
t _{PTERMCO}		1.19		1.40		1.08	ns

Table 63. EP20K100E f _{MAX} Routing Delays									
Symbol	-	1	-	-2	-;	Unit			
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.24		0.27		0.29	ns		
t _{F5-20}		1.04		1.26		1.52	ns		
t _{F20+}		1.12		1.36		1.86	ns		

Tables 67 through 72 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K160E APEX 20KE devices.

Table 67. EP20K160E f _{MAX} LE Timing Microparameters									
Symbol	_	1		-2	-	Unit			
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.22		0.24		0.26		ns		
t _H	0.22		0.24		0.26		ns		
t _{CO}		0.25		0.31		0.35	ns		
t _{LUT}		0.69		0.88		1.12	ns		

Symbol	-1		-	2	-	-3 Uni		
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR}	2.86		3.24		3.54		ns	
t _{INHBIDIR}	0.00		0.00		0.00		ns	
t _{OUTCOBIDIR}	2.00	5.07	2.00	5.59	2.00	6.13	ns	
t _{XZBIDIR}		7.43		8.23		8.58	ns	
t _{ZXBIDIR}		7.43		8.23		8.58	ns	
t _{INSUBIDIRPLL}	4.93		5.48		-		ns	
t _{INHBIDIRPLL}	0.00		0.00		-		ns	
toutcobidirpll	0.50	3.00	0.50	3.35	-	-	ns	
t _{XZBIDIRPLL}		5.36		5.99		-	ns	
t _{ZXBIDIRPLL}		5.36		5.99		-	ns	

Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 73. EP2	20K200E f _{MAX}	LE Timing Mid	croparameter	s			
Symbol	-	1		-2	-:	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.23		0.24		0.26		ns
t _H	0.23		0.24		0.26		ns
t_{CO}		0.26		0.31		0.36	ns
t _{LUT}		0.70		0.90		1.14	ns

Table 92. EP20K	600E f _{MAX} ESE	3 Timing Micr	oparameters					
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{ESBARC}		1.67		2.39		3.11	ns	
t _{ESBSRC}		2.27		3.07		3.86	ns	
t _{ESBAWC}		3.19		4.56		5.93	ns	
t _{ESBSWC}		3.51		4.62		5.72	ns	
t _{ESBWASU}	1.46		2.08		2.70		ns	
t _{ESBWAH}	0.00		0.00		0.00		ns	
t _{ESBWDSU}	1.60		2.29		2.97		ns	
t _{ESBWDH}	0.00		0.00		0.00		ns	
t _{ESBRASU}	1.61		2.30		2.99		ns	
t _{ESBRAH}	0.00		0.00		0.00		ns	
t _{ESBWESU}	1.49		2.30		3.11		ns	
t _{ESBWEH}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	-0.01		0.35		0.71		ns	
t _{ESBDATAH}	0.13		0.13		0.13		ns	
t _{ESBWADDRSU}	0.19		0.62		1.06		ns	
t _{ESBRADDRSU}	0.25		0.71		1.17		ns	
t _{ESBDATACO1}		1.01		1.19		1.37	ns	
t _{ESBDATACO2}		2.18		3.12		4.05	ns	
t _{ESBDD}		3.19		4.56		5.93	ns	
t _{PD}		1.57		2.25		2.92	ns	
t _{PTERMSU}	0.85		1.43		2.01		ns	
t _{PTERMCO}		1.03		1.21		1.39	ns	

Table 93. EP20K600E f _{MAX} Routing Delays										
Symbol	-1 Spee	d Grade	-2 Spe	ed Grade	-3 Spee	Unit				
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.22		0.25		0.26	ns			
t _{F5-20}		1.26		1.39		1.52	ns			
t _{F20+}		3.51		3.88		4.26	ns			

Table 99. EP2	Table 99. EP20K1000E f _{MAX} Routing Delays									
Symbol	-1 Spee	d Grade	-2 Spec	-2 Speed Grade -3 Speed Grade			Unit			
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.27		0.27		0.27	ns			
t _{F5-20}		1.45		1.63		1.75	ns			
t _{F20+}		4.15		4.33		4.97	ns			

Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.25		1.43		1.67		ns
t _{CL}	1.25		1.43		1.67		ns
t _{CLRP}	0.20		0.20		0.20		ns
t _{PREP}	0.20		0.20		0.20		ns
t _{ESBCH}	1.25		1.43		1.67		ns
t _{ESBCL}	1.25		1.43		1.67		ns
t _{ESBWP}	1.28		1.51		1.65		ns
t _{ESBRP}	1.11		1.29		1.41		ns

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.70		2.84		2.97		ns
t _{INH}	0.00		0.00		0.00		ns
t _{OUTCO}	2.00	5.75	2.00	6.33	2.00	6.90	ns
t _{INSUPLL}	1.64		2.09		=		ns
t _{INHPLL}	0.00		0.00		=		ns
t _{OUTCOPLL}	0.50	2.25	0.50	2.99	-	-	ns

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

