

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

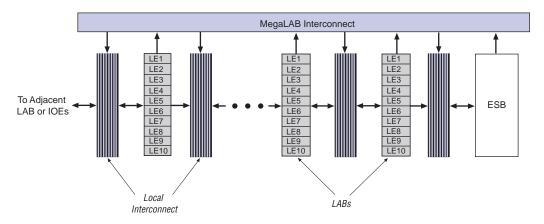
Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	832
Number of Logic Elements/Cells	-
Total RAM Bits	-
Number of I/O	271
Number of Gates	-
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=ep20k200ebc356-2

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins.

MegaLAB Structure

APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure.

Figure 2. MegaLAB Structure

Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs.

If both the rising and falling edges of a clock are used in a LAB, both LAB-wide clock signals are used.

The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

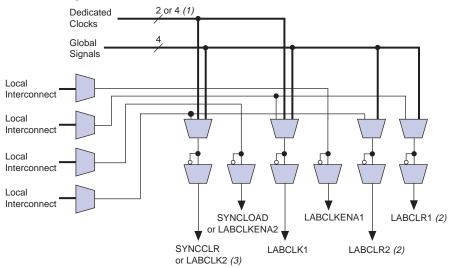


Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- (1) APEX 20KE devices have four dedicated clocks.
- (2) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB.
- (3) The SYNCCLR signal can be generated by the local interconnect or global signals.

LE Operating Modes

The APEX 20K LE can operate in one of the following three modes:

- Normal mode
- Arithmetic mode
- Counter mode

Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes.

The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NoT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NoT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

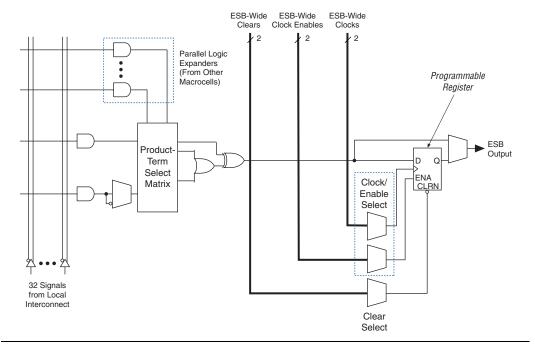
FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

Source	Destination								
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect
Row I/O Pin					✓	✓	✓	✓	
Column I/O Pin								✓	√ (1)
LE					✓	✓	✓	✓	
ESB					✓	✓	✓	✓	
Local Interconnect	✓	✓	✓	✓					
MegaLAB Interconnect					~				
Row FastTrack Interconnect						✓		✓	
Column						✓	✓		
FastTrack Interconnect									
FastRow Interconnect					✓ (1)				

Note to Table 9:


(1) This connection is supported in APEX 20KE devices only.

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

Figure 14. APEX 20K Macrocell

For registered functions, each macrocell register can be programmed individually to implement D, T, JK, or SR operation with programmable clock control. The register can be bypassed for combinatorial operation. During design entry, the designer specifies the desired register type; the Quartus II software then selects the most efficient register operation for each registered function to optimize resource utilization. The Quartus II software or other synthesis tools can also select the most efficient register operation automatically when synthesizing HDL designs.

Each programmable register can be clocked by one of two ESB-wide clocks. The ESB-wide clocks can be generated from device dedicated clock pins, global signals, or local interconnect. Each clock also has an associated clock enable, generated from the local interconnect. The clock and clock enable signals are related for a particular ESB; any macrocell using a clock also uses the associated clock enable.

If both the rising and falling edges of a clock are used in an ESB, both ESB-wide clock signals are used.

From Previous Macrocell Product-Macrocell Term Product-Select Term Logic Matrix Parallel Expander Switch Product-Macrocell Term Product-Select Term Logic Matrix Parallel Expander Switch 32 Signals from To Next

Figure 16. APEX 20K Parallel Expanders

Embedded System Block

Local Interconnect

The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Macrocell

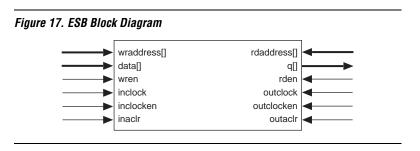


Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software.

Table 10. APEX 20K Programmable Delay Chains						
Programmable Delays Quartus II Logic Option						
Input pin to core delay	Decrease input delay to internal cells					
Input pin to input register delay	Decrease input delay to input register					
Core to output register delay Decrease input delay to output register						
Output register t _{CO} delay	Increase delay to output pin					

The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices.

The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains					
Programmable Delays Quartus II Logic Option					
Input Pin to Core Delay	Decrease input delay to internal cells				
Input Pin to Input Register Delay	Decrease input delay to input registers				
Core to Output Register Delay	Decrease input delay to output register				
Output Register t _{CO} Delay	Increase delay to output pin				
Clock Enable Delay	Increase clock enable delay				

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used.

Table 14. Multiplication Factor Combinations					
Clock 1 Clock 2					
×1	×1				
×1, ×2 ×2					
×1, ×2, ×4	×4				

APEX 20KE ClockLock Feature

APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KE PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM.

Clock Multiplication

The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where m and k range from 2 to 160, and n and v range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

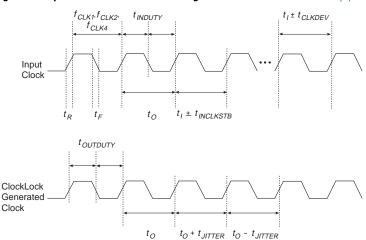


Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

Note to Figure 30:

(1) The tl parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

Symbol	Parameter	Min	Max	Unit	
f _{OUT}	Output frequency	25	180	MHz	
f _{CLK1} (1)	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	180 (1)	MHz	
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	90	MHz	
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	48	MHz	
^t OUTDUTY	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%	
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2)		25,000 (3)	PPM	
t _R	Input rise time		5	ns	
t _F	Input fall time		5	ns	
t _{LOCK}	Time required for ClockLock/ClockBoost to acquire lock (4)		10	μs	

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

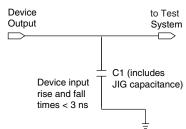

All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration.

Table 19. APEX 20K JT	AG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer.
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS (1)	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ICR Instructions	Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster TM or ByteBlasterMV TM download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor.
SignalTap Instructions (1)	Monitors internal device operation with the SignalTap embedded logic analyzer.

Note to Table 19:

(1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions.

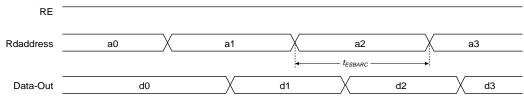
Figure 32. APEX 20K AC Test Conditions Note (1)

Note to Figure 32:

(1) Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

Operating Conditions

Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices.


Table 2	Table 23. APEX 20K 5.0-V Tolerant Device Absolute Maximum Ratings Notes (1), (2)						
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage	With respect to ground (3)	-0.5	3.6	V		
V _{CCIO}			-0.5	4.6	V		
V _I	DC input voltage		-2.0	5.75	V		
I _{OUT}	DC output current, per pin		-25	25	mA		
T _{STG}	Storage temperature	No bias	-65	150	° C		
T _{AMB}	Ambient temperature	Under bias	-65	135	° C		
TJ	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	° C		
		Ceramic PGA packages, under bias		150	°C		

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level LVTTL, CMOS, or 3.3-V PCI input voltage		1.7, 0.5 × V _{CCIO} (10)		4.1	V
V _{IL}	Low-level LVTTL, CMOS, or 3.3-V PCI input voltage		-0.5		0.8, 0.3 × V _{CCIO} (10)	V
V _{OH}	3.3-V high-level LVTTL output voltage	I _{OH} = -12 mA DC, V _{CCIO} = 3.00 V (11)	2.4			V
	3.3-V high-level LVCMOS output voltage	$I_{OH} = -0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V } (11)$	V _{CCIO} - 0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (11)	0.9 × V _{CCIO}			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (11)	2.1			V
		$I_{OH} = -1 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V } (11)$	2.0			V
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V } (11)$	1.7			V
V _{OL}	3.3-V low-level LVTTL output voltage	I_{OL} = 12 mA DC, V_{CCIO} = 3.00 V (12)			0.4	V
	3.3-V low-level LVCMOS output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V } (12)$			0.2	V
	3.3-V low-level PCI output voltage	$I_{OL} = 1.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (12)			0.1 × V _{CCIO}	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (12)			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (12)			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (12)			0.7	V
I _I	Input pin leakage current	V _I = 4.1 to -0.5 V (13)	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	$V_0 = 4.1 \text{ to } -0.5 \text{ V } (13)$	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	$V_I =$ ground, no load, no toggling inputs, -1 speed grade		10		mA
		V _I = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (14)	20		50	kΩ
	before and during configuration	V _{CCIO} = 2.375 V (14)	30		80	kΩ
		V _{CCIO} = 1.71 V (14)	60		150	kΩ

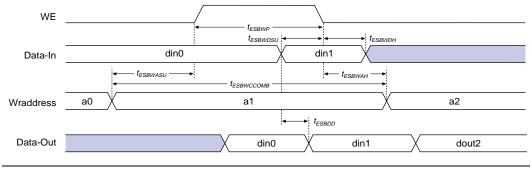

Figures 38 and 39 show the asynchronous and synchronous timing waveforms, respectively, for the ESB macroparameters in Table 31.

Figure 38. ESB Asynchronous Timing Waveforms

ESB Asynchronous Write

Note to Tables 32 and 33:

(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model.

Table 34. APEX 20KE LE Timing Microparameters						
Symbol Parameter						
t _{SU}	LE register setup time before clock					
t _H	LE register hold time after clock					
t _{CO}	LE register clock-to-output delay					
t _{LUT}	LUT delay for data-in to data-out					

Table 35. APE.	X 20KE ESB Timing Microparameters
Symbol	Parameter
t _{ESBARC}	ESB Asynchronous read cycle time
t _{ESBSRC}	ESB Synchronous read cycle time
t _{ESBAWC}	ESB Asynchronous write cycle time
t _{ESBSWC}	ESB Synchronous write cycle time
t _{ESBWASU}	ESB write address setup time with respect to WE
t _{ESBWAH}	ESB write address hold time with respect to WE
t _{ESBWDSU}	ESB data setup time with respect to WE
t _{ESBWDH}	ESB data hold time with respect to WE
t _{ESBRASU}	ESB read address setup time with respect to RE
t _{ESBRAH}	ESB read address hold time with respect to RE
t _{ESBWESU}	ESB WE setup time before clock when using input register
t _{ESBWEH}	ESB WE hold time after clock when using input register
t _{ESBDATASU}	ESB data setup time before clock when using input register
t _{ESBDATAH}	ESB data hold time after clock when using input register
t _{ESBWADDRSU}	ESB write address setup time before clock when using input registers
t _{ESBRADDRSU}	ESB read address setup time before clock when using input registers
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers
t _{ESBDATACO2}	ESB clock-to-output delay without output registers
t _{ESBDD}	ESB data-in to data-out delay for RAM mode
t _{PD}	ESB Macrocell input to non-registered output
t _{PTERMSU}	ESB Macrocell register setup time before clock
t _{PTERMCO}	ESB Macrocell register clock-to-output delay

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	0.55		0.78		1.15		ns
t _{CL}	0.55		0.78		1.15		ns
t _{CLRP}	0.22		0.31		0.46		ns
t _{PREP}	0.22		0.31		0.46		ns
t _{ESBCH}	0.55		0.78		1.15		ns
t _{ESBCL}	0.55		0.78		1.15		ns
t _{ESBWP}	1.43		2.01		2.97		ns
t _{ESBRP}	1.15		1.62		2.39		ns

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	1
t _{INSU}	2.02		2.13		2.24		ns
t _{INH}	0.00		0.00		0.00		ns
t _{ouтco}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{INSUPLL}	2.11		2.23		=		ns
t _{INHPLL}	0.00		0.00		=		ns
t _{OUTCOPLL}	0.50	2.60	0.50	2.88	-	-	ns

Symbol	-1		-	2	-	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	1.85		1.77		1.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{XZBIDIR}		7.48		8.46		9.83	ns
t _{ZXBIDIR}		7.48		8.46		9.83	ns
t _{INSUBIDIRPLL}	4.12		4.24		=		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	2.60	0.50	2.88	-	-	ns
t _{XZBIDIRPLL}		5.21		5.99		-	ns
t _{ZXBIDIRPLL}		5.21		5.99		-	ns

Symbol	-1		-	2	-	Unit	
	Min	Max	Min	Max	Min	Max	1
t _{INSUBIDIR}	2.81		3.19		3.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
toutcobidir	2.00	5.12	2.00	5.62	2.00	6.11	ns
t _{XZBIDIR}		7.51		8.32		8.67	ns
tzxbidir		7.51		8.32		8.67	ns
t _{INSUBIDIRPLL}	3.30		3.64		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
toutcobidirpll	0.50	3.01	0.50	3.36	-	-	ns
txzbidirpll		5.40		6.05		-	ns
tzxbidirpll		5.40		6.05		-	ns

Tables 79 through 84 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K300E APEX 20KE devices.

Table 79. EP20K300E f _{MAX} LE Timing Microparameters										
Symbol	-	1		-2	-;	Unit				
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.16		0.17		0.18		ns			
t _H	0.31		0.33		0.38		ns			
t _{CO}		0.28		0.38		0.51	ns			
t _{LUT}		0.79		1.07		1.43	ns			

Symbol	-	1	-	-2 -3		3	Unit	
	Min	Max	Min	Max	Min	Max		
t _{ESBARC}		1.79		2.44		3.25	ns	
t _{ESBSRC}		2.40		3.12		4.01	ns	
t _{ESBAWC}		3.41		4.65		6.20	ns	
t _{ESBSWC}		3.68		4.68		5.93	ns	
t _{ESBWASU}	1.55		2.12		2.83		ns	
t _{ESBWAH}	0.00		0.00		0.00		ns	
t _{ESBWDSU}	1.71		2.33		3.11		ns	
t _{ESBWDH}	0.00		0.00		0.00		ns	
t _{ESBRASU}	1.72		2.34		3.13		ns	
t _{ESBRAH}	0.00		0.00		0.00		ns	
t _{ESBWESU}	1.63		2.36		3.28		ns	
t _{ESBWEH}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	0.07		0.39		0.80		ns	
t _{ESBDATAH}	0.13		0.13		0.13		ns	
t _{ESBWADDRSU}	0.27		0.67		1.17		ns	
t _{ESBRADDRSU}	0.34		0.75		1.28		ns	
t _{ESBDATACO1}		1.03		1.20		1.40	ns	
t _{ESBDATACO2}		2.33		3.18		4.24	ns	
t _{ESBDD}		3.41		4.65		6.20	ns	
t _{PD}		1.68		2.29		3.06	ns	
t _{PTERMSU}	0.96		1.48		2.14		ns	
t _{PTERMCO}		1.05		1.22		1.42	ns	

Table 81. EP20K300E f _{MAX} Routing Delays										
Symbol	-	1		2	-	Unit				
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.22		0.24		0.26	ns			
t _{F5-20}		1.33		1.43		1.58	ns			
t _{F20+}		3.63		3.93		4.35	ns			

Tables 97 through 102 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices.

Table 97. EP20K1000E f _{MAX} LE Timing Microparameters										
Symbol	-1 Spee	d Grade	-2 Speed Grade		-3 Speed Grade		Unit			
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.25		0.25		0.25		ns			
t _H	0.25		0.25		0.25		ns			
t _{CO}		0.28		0.32		0.33	ns			
t _{LUT}		0.80		0.95		1.13	ns			