E·XF

Intel - EP20K200EBC356-3 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding Embedded - FPGAs (Field Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	8320
Total RAM Bits	106496
Number of I/O	271
Number of Gates	526000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	356-LBGA
Supplier Device Package	356-BGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k200ebc356-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Additiona	al APEX 20K De	vice Features	Note (1)			
Feature	EP20K300E	EP20K400	EP20K400E	EP20K600E	EP20K1000E	EP20K1500E
Maximum system gates	728,000	1,052,000	1,052,000	1,537,000	1,772,000	2,392,000
Typical gates	300,000	400,000	400,000	600,000	1,000,000	1,500,000
LEs	11,520	16,640	16,640	24,320	38,400	51,840
ESBs	72	104	104	152	160	216
Maximum RAM bits	147,456	212,992	212,992	311,296	327,680	442,368
Maximum macrocells	1,152	1,664	1,664	2,432	2,560	3,456
Maximum user I/O pins	408	502	488	588	708	808

Note to Tables 1 and 2:

 The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates.

Additional Features

- Designed for low-power operation
 - 1.8-V and 2.5-V supply voltage (see Table 3)
 - MultiVolt[™] I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
 - ESB offering programmable power-saving mode

Table 3. APEX 20K Supply Voltages							
Feature	De	vice					
	EP20K100 EP20K200 EP20K400	EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E EP20K1500E					
Internal supply voltage (V _{CCINT})	2.5 V	1.8 V					
MultiVolt I/O interface voltage levels (V _{CCIO})	2.5 V, 3.3 V, 5.0 V	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)					

Note to Table 3:

(1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor.

Feature	APEX 20K Devices	APFX 20KF Devices
32/64-Bit, 33-MHz PCI	grades	Full compliance in -1, -2 speed grades
32/64-Bit, 66-MHz PCI	-	Full compliance in -1 speed grade
MultiVolt I/O	2.5-V or 3.3-V V _{CCIO}	1.8-V, 2.5-V, or 3.3-V V _{CCIO}
	V _{CCIO} selected for device	V _{CCIO} selected block-by-block
	Certain devices are 5.0-V tolerant	5.0-V tolerant with use of external resistor
ClockLock support	Clock delay reduction	Clock delay reduction
	2× and 4× clock multiplication	$m/(n \times v)$ or $m/(n \times k)$ clock multiplication
		Drive ClockLock output off-chip
		External clock feedback
		ClockShift
		LVDS support
		Up to four PLLs
		ClockShift, clock phase adjustment
Dedicated clock and input pins	Six	Eight
I/O standard support	2.5-V, 3.3-V, 5.0-V I/O	1.8-V, 2.5-V, 3.3-V, 5.0-V I/O
	3.3-V PCI	2.5-V I/O
	Low-voltage complementary	3.3-V PCI and PCI-X
	metal-oxide semiconductor	3.3-V Advanced Graphics Port (AGP)
	(LVCMOS)	Center tap terminated (CTT)
	Low-voltage transistor-to-transistor	GTL+
	logic (LVTTL)	LVCMOS
		True-LVDS and LVPECL data pins
		(In EP20K300E and larger devices)
		LVDS and LVPECL signaling (in all BGA
		and FineLine BGA devices)
		LVDS and LVPECL data pins up to
		156 Mbps (III - I speed grade devices)
		SSTL-3 Class Land II
Memory support	Dual-port BAM	CAM
	FIFO	Dual-port BAM
	BAM	FIFO
	BOM	BAM
		ROM

Logic Array Block

Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB.

APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect.

Figure 6. APEX 20K Carry Chain

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode

Notes to Figure 21:

All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)APEX 20KE devices have four dedicated clocks. (2)

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Altera Corporation

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains					
Programmable Delays	Quartus II Logic Option				
Input Pin to Core Delay	Decrease input delay to internal cells				
Input Pin to Input Register Delay	Decrease input delay to input registers				
Core to Output Register Delay	Decrease input delay to output register				
Output Register t_{CO} Delay	Increase delay to output pin				
Clock Enable Delay	Increase clock enable delay				

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. Table 22 shows the JTAG timing parameters and values for APEX 20K devices.

Symbol	Parameter	Min	Max	Unit				
t _{JCP}	TCK clock period	100		ns				
t _{JCH}	TCK clock high time	50		ns				
t _{JCL}	TCK clock low time	50		ns				
t _{JPSU}	JTAG port setup time	20		ns				
t _{JPH}	JTAG port hold time	45		ns				
t _{JPCO}	JTAG port clock to output		25	ns				
t _{JPZX}	JTAG port high impedance to valid output		25	ns				
t _{JPXZ}	JTAG port valid output to high impedance		25	ns				
t _{JSSU}	Capture register setup time	20		ns				
t _{JSH}	Capture register hold time	45		ns				
t _{JSCO}	Update register clock to output		35	ns				
t _{JSZX}	Update register high impedance to valid output		35	ns				
t _{JSXZ}	Update register valid output to high impedance		35	ns				

Table 22. APEX 20K JTAG Timing Parameters & Values

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- Jam Programming & Test Language Specification

Generic Testing

Each APEX 20K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20K devices are made under conditions equivalent to those shown in Figure 32. Multiple test patterns can be used to configure devices during all stages of the production flow.

Table 25. APEX 20K 5.0-V Tolerant Device DC Operating Conditions (Part 2 of 2) Notes (2), (7), (8)									
Symbol	Parameter	Conditions	Min	Тур	Max	Unit			
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)			0.45	V			
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (11)$			0.2	V			
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)			$0.1 imes V_{CCIO}$	V			
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (11)			0.2	V			
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (11)			0.4	V			
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (11)			0.7	V			
I _I	Input pin leakage current	$V_1 = 5.75$ to -0.5 V	-10		10	μA			
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = 5.75$ to -0.5 V	-10		10	μA			
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V_1 = ground, no load, no toggling inputs, -1 speed grade (12)		10		mA			
		V ₁ = ground, no load, no toggling inputs, -2, -3 speed grades (12)		5		mA			
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (13)	20		50	W			
	before and during configuration	V _{CCIO} = 2.375 V (13)	30		80	W			

Figure 39. ESB Synchronous Timing Waveforms

ESB Synchronous Write (ESB Output Registers Used)

Figure 40 shows the timing model for bidirectional I/O pin timing.

Table 41. EP20K200 f _{MAX} Timing Parameters							
Symbol	-1 Spee	d Grade	-2 Spee	ed Grade	-3 Spee	ed Grade	Units
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.5		0.6		0.8		ns
t _H	0.7		0.8		1.0		ns
t _{CO}		0.3		0.4		0.5	ns
t _{LUT}		0.8		1.0		1.3	ns
t _{ESBRC}		1.7		2.1		2.4	ns
t _{ESBWC}		5.7		6.9		8.1	ns
t _{ESBWESU}	3.3		3.9		4.6		ns
t _{ESBDATASU}	2.2		2.7		3.1		ns
t _{ESBDATAH}	0.6		0.8		0.9		ns
t _{ESBADDRSU}	2.4		2.9		3.3		ns
t _{ESBDATACO1}		1.3		1.6		1.8	ns
t _{ESBDATACO2}		2.6		3.1		3.6	ns
t _{ESBDD}		2.5		3.3		3.6	ns
t _{PD}		2.5		3.0		3.6	ns
t _{PTERMSU}	2.3		2.7		3.2		ns
t _{PTERMCO}		1.5		1.8		2.1	ns
t _{F1-4}		0.5		0.6		0.7	ns
t _{F5-20}		1.6		1.7		1.8	ns
t _{F20+}		2.2		2.2		2.3	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns
t _{CLRP}	0.3		0.4		0.4		ns
t _{PREP}	0.4		0.5		0.5		ns
t _{ESBCH}	2.0		2.5		3.0		ns
t _{ESBCL}	2.0		2.5		3.0		ns
t _{ESBWP}	1.6		1.9		2.2		ns
t _{ESBRP}	1.0		1.3		1.4		ns

Table 46. EP20K200 External Bidirectional Timing Parameters								
Symbol	-1 Spee	d Grade	-2 Spe	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{INSUBIDIR} (1)	1.9		2.3		2.6		ns	
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns	
t _{OUTCOBIDIR} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns	
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns	
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns	
t _{INSUBIDIR} (2)	1.1		1.2		-		ns	
t _{INHBIDIR} (2)	0.0		0.0		-		ns	
t _{OUTCOBIDIR} (2)	0.5	2.7	0.5	3.1	-	-	ns	
t _{XZBIDIR} (2)		4.3		5.0		-	ns	
t _{ZXBIDIR} (2)		4.3		5.0		-	ns	

Table 47. EP20K400 External Timing Parameters

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed	Unit			
	Min	Max	Min	Max	Min	Max			
t _{INSU} (1)	1.4		1.8		2.0		ns		
t _{INH} (1)	0.0		0.0		0.0		ns		
t _{OUTCO} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns		
t _{INSU} (2)	0.4		1.0		-		ns		
t _{INH} (2)	0.0		0.0		-		ns		
t _{OUTCO} (2)	0.5	3.1	0.5	4.1	-	-	ns		

Table 48. EP20K400 External Bidirectional Timing Parameters

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	1.4		1.8		2.0		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns
t _{XZBIDIR} (1)		7.3		8.9		10.3	ns
t _{ZXBIDIR} (1)		7.3		8.9		10.3	ns
t _{INSUBIDIR} (2)	0.5		1.0		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (2)	0.5	3.1	0.5	4.1	-	-	ns
t _{XZBIDIR} (2)		6.2		7.6		-	ns
t _{ZXBIDIR} (2)		6.2		7.6		_	ns

Altera Corporation

Table 52. EP20K30E Minimum Pulse Width Timing Parameters											
Symbol	-	-1		-2			Unit				
	Min	Max	Min	Мах	Min	Max					
t _{CH}	0.55		0.78		1.15		ns				
t _{CL}	0.55		0.78		1.15		ns				
t _{CLRP}	0.22		0.31		0.46		ns				
t _{PREP}	0.22		0.31		0.46		ns				
t _{ESBCH}	0.55		0.78		1.15		ns				
t _{ESBCL}	0.55		0.78		1.15		ns				
t _{ESBWP}	1.43		2.01		2.97		ns				
t _{ESBRP}	1.15		1.62		2.39		ns				

Table 53. EP2	Table 53. EP20K30E External Timing Parameters											
Symbol	-1			-2		}	Unit					
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.02		2.13		2.24		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	4.88	2.00	5.36	2.00	5.88	ns					
t _{INSUPLL}	2.11		2.23		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	2.60	0.50	2.88	-	-	ns					

Table 54. EP20K30E External Bidirectional Timing Parameters											
Symbol	-1		-2		-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{insubidir}	1.85		1.77		1.54		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
t _{outcobidir}	2.00	4.88	2.00	5.36	2.00	5.88	ns				
t _{XZBIDIR}		7.48		8.46		9.83	ns				
t _{ZXBIDIR}		7.48		8.46		9.83	ns				
t _{insubidirpll}	4.12		4.24		-		ns				
t _{inhbidirpll}	0.00		0.00		-		ns				
t _{outcobidirpll}	0.50	2.60	0.50	2.88	-	-	ns				
t _{xzbidirpll}		5.21		5.99		-	ns				
t _{ZXBIDIRPLL}		5.21		5.99		-	ns				

Table 69. EP20K160E f _{MAX} Routing Delays											
Symbol	ıbol -1			-2		3	Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.25		0.26		0.28	ns				
t _{F5-20}		1.00		1.18		1.35	ns				
t _{F20+}		1.95		2.19		2.30	ns				

Symbol	-	1	-	2	-3	1	Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.34		1.43		1.55		ns
t _{CL}	1.34		1.43		1.55		ns
t _{CLRP}	0.18		0.19		0.21		ns
t _{PREP}	0.18		0.19		0.21		ns
t _{ESBCH}	1.34		1.43		1.55		ns
t _{ESBCL}	1.34		1.43		1.55		ns
t _{ESBWP}	1.15		1.45		1.73		ns
t _{ESBRP}	0.93		1.15		1.38		ns

Table 71. EP20K160E External Timing Parameters											
Symbol	-1		-2		-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{INSU}	2.23		2.34		2.47		ns				
t _{INH}	0.00		0.00		0.00		ns				
t _{outco}	2.00	5.07	2.00	5.59	2.00	6.13	ns				
t _{insupll}	2.12		2.07		-		ns				
t _{INHPLL}	0.00		0.00		-		ns				
t _{outcopll}	0.50	3.00	0.50	3.35	-	-	ns				

Table 76. EP	Table 76. EP20K200E Minimum Pulse Width Timing Parameters											
Symbol		-1		-2		-3						
	Min	Max	Min	Max	Min	Max						
t _{CH}	1.36		2.44		2.65		ns					
t _{CL}	1.36		2.44		2.65		ns					
t _{CLRP}	0.18		0.19		0.21		ns					
t _{PREP}	0.18		0.19		0.21		ns					
t _{ESBCH}	1.36		2.44		2.65		ns					
t _{ESBCL}	1.36		2.44		2.65		ns					
t _{ESBWP}	1.18		1.48		1.76		ns					
t _{ESBRP}	0.95		1.17		1.41		ns					

Table 77. EP2	Table 77. EP20K200E External Timing Parameters											
Symbol	-1			-2		-3						
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.24		2.35		2.47		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	5.12	2.00	5.62	2.00	6.11	ns					
t _{INSUPLL}	2.13		2.07		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	3.01	0.50	3.36	-	-	ns					

APEX 20K Programmable Logic Device Family Data Sheet

Table 87. EP20K400E f _{MAX} Routing Delays											
Symbol	III -1 Speed Grade -2 Speed Grade -3		-3 Spee	d Grade	Unit						
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.25		0.25		0.26	ns				
t _{F5-20}		1.01		1.12		1.25	ns				
t _{F20+}		3.71		3.92		4.17	ns				

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.36		2.22		2.35		ns	
t _{CL}	1.36		2.26		2.35		ns	
t _{CLRP}	0.18		0.18		0.19		ns	
t _{PREP}	0.18		0.18		0.19		ns	
t _{ESBCH}	1.36		2.26		2.35		ns	
t _{ESBCL}	1.36		2.26		2.35		ns	
t _{ESBWP}	1.17		1.38		1.56		ns	
t _{ESBRP}	0.94		1.09		1.25		ns	

Table 89. EP2	Table 89. EP20K400E External Timing Parameters											
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		d Grade	Unit					
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.51		2.64		2.77		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	5.25	2.00	5.79	2.00	6.32	ns					
t _{insupll}	3.221		3.38		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	2.25	0.50	2.45	-	-	ns					

Г

Table 94. EP20K600E Minimum Pulse Width Timing Parameters									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{CH}	2.00		2.50		2.75		ns		
t _{CL}	2.00		2.50		2.75		ns		
t _{CLRP}	0.18		0.26		0.34		ns		
t _{PREP}	0.18		0.26		0.34		ns		
t _{ESBCH}	2.00		2.50		2.75		ns		
t _{ESBCL}	2.00		2.50		2.75		ns		
t _{ESBWP}	1.17		1.68		2.18		ns		
t _{ESBRP}	0.95		1.35		1.76		ns		

Table 95. EP20K600E External Timing Parameters									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSU}	2.74		2.74		2.87		ns		
t _{INH}	0.00		0.00		0.00		ns		
t _{outco}	2.00	5.51	2.00	6.06	2.00	6.61	ns		
tINSUPLL	1.86		1.96		-		ns		
t _{INHPLL}	0.00		0.00		-		ns		
toutcopll	0.50	2.62	0.50	2.91	-	-	ns		

Table 96. EP20K600E External Bidirectional Timing Parameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Мах	Min	Max		
t _{insubidir}	0.64		0.98		1.08		ns	
t _{inhbidir}	0.00		0.00		0.00		ns	
t _{outcobidir}	2.00	5.51	2.00	6.06	2.00	6.61	ns	
t _{XZBIDIR}		6.10		6.74		7.10	ns	
t _{ZXBIDIR}		6.10		6.74		7.10	ns	
t _{insubidirpll}	2.26		2.68		-		ns	
t _{inhbidirpll}	0.00		0.00		-		ns	
t _{outcobidirpll}	0.50	2.62	0.50	2.91	-	-	ns	
t _{XZBIDIRPLL}		3.21		3.59		-	ns	
t _{ZXBIDIRPLL}		3.21		3.59		-	ns	

Tables 97 through 102 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices.

Table 97. EP20K1000E f _{MAX} LE Timing Microparameters									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{SU}	0.25		0.25		0.25		ns		
t _H	0.25		0.25		0.25		ns		
t _{CO}		0.28		0.32		0.33	ns		
t _{LUT}		0.80		0.95		1.13	ns		

Revision History

The information contained in the *APEX 20K Programmable Logic Device Family Data Sheet* version 5.1 supersedes information published in previous versions.

Version 5.1

APEX 20K Programmable Logic Device Family Data Sheet version 5.1 contains the following changes:

- In version 5.0, the VI input voltage spec was updated in Table 28 on page 63.
- In version 5.0, *Note* (5) to Tables 27 through 30 was revised.
- Added *Note* (2) to Figure 21 on page 33.

Version 5.0

APEX 20K Programmable Logic Device Family Data Sheet version 5.0 contains the following changes:

- Updated Tables 23 through 26. Removed 2.5-V operating condition tables because all APEX 20K devices are now 5.0-V tolerant.
- Updated conditions in Tables 33, 38 and 39.
- Updated data for t_{ESBDATAH} parameter.

Version 4.3

APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains the following changes:

- Updated Figure 20.
- Updated *Note* (2) to Table 13.
- Updated notes to Tables 27 through 30.

Version 4.2

APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains the following changes:

- Updated Figure 29.
- Updated *Note* (1) to Figure 29.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Altera Corporation