E·XFL

Intel - EP20K200EBC652-2 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	8320
Total RAM Bits	106496
Number of I/O	376
Number of Gates	526000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	652-BGA
Supplier Device Package	652-BGA (45x45)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k200ebc652-2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LAB-Wide Normal Mode (1) Clock Enable (2) Carry-In (3) Cascade-In LE-Out data1 data2 PRN 4-Input D Q LUT data3 LE-Out ENA data4 CLRN Cascade-Out LAB-Wide Arithmetic Mode Clock Enable (2) Carry-In Cascade-In LE-Out PRN data1 Q D 3-Input data2 LUT LE-Out ENA CLRN 3-Input LUT Cascade-Out Carry-Out

Figure 8. APEX 20K LE Operating Modes

Notes to Figure 8:

- (1) LEs in normal mode support register packing.
- (2) There are two LAB-wide clock enables per LAB.
- (3) When using the carry-in in normal mode, the packed register feature is unavailable.
- (4) A register feedback multiplexer is available on LE1 of each LAB.
- (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB.
- (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB.

The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure.

A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows.

Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures.

Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other.

Figure 11. Driving the FastTrack Interconnect

APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow[™] interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect.

Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control

APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo Bit[™] option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.

I/O Structure

The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently.

The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. APEX 20KE devices include an enhanced IOE, which drives the FastRow interconnect. The FastRow interconnect connects a column I/O pin directly to the LAB local interconnect within two MegaLAB structures. This feature provides fast setup times for pins that drive high fan-outs with complex logic, such as PCI designs. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The APEX 20KE IOE also includes direct support for open-drain operation, giving faster clock-to-output for open-drain signals. Some programmable delays in the APEX 20KE IOE offer multiple levels of delay to fine-tune setup and hold time requirements. The Quartus II software compiler can set these delays automatically to minimize setup time while providing a zero hold time.

Table 11 describes the APEX 20KE programmable delays and their logic options in the Quartus II software.

Table 11. APEX 20KE Programmable Delay Chains							
Programmable Delays	Quartus II Logic Option						
Input Pin to Core Delay	Decrease input delay to internal cells						
Input Pin to Input Register Delay	Decrease input delay to input registers						
Core to Output Register Delay	Decrease input delay to output register						
Output Register t_{CO} Delay	Increase delay to output pin						
Clock Enable Delay	Increase clock enable delay						

The register in the APEX 20KE IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, an asynchronous preset can control the register. Figure 26 shows how fast bidirectional I/O pins are implemented in APEX 20KE devices. This feature is useful for cases where the APEX 20KE device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect.

Advanced I/O Standard Support

APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II.

For more information on I/O standards supported by APEX 20KE devices, see *Application Note* 117 (*Using Selectable I/O Standards in Altera Devices*).

The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support.

Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs.

When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks.

Figure 29. APEX 20KE I/O Banks

Notes to Figure 29:

- For more information on placing I/O pins in LVDS blocks, refer to the Guidelines for Using LVDS Blocks section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V.

Power Sequencing & Hot Socketing

Because APEX 20K and APEX 20KE devices can be used in a mixedvoltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the V_{CCIO} and V_{CCINT} power supplies may be powered in any order.

For more information, please refer to the "Power Sequencing Considerations" section in the *Configuring APEX 20KE & APEX 20KC Devices* chapter of the *Configuration Devices Handbook*.

Signals can be driven into APEX 20K devices before and during power-up without damaging the device. In addition, APEX 20K devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20K and APEX 20KE devices operate as specified by the user.

Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

Note to Figure 30:

(1) The tI parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

Table 15. A	PEX 20K ClockLock & ClockBoost Parameters for -1 3	Speed-Grade	Devices (Part 1 d	of 2)	
Symbol	Parameter	Min	Max	Unit	
f _{OUT}	Output frequency	25	180	MHz	
f _{CLK1} <i>(1)</i>	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	180 (1)	MHz	
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	actor equals 1) 16 90 quency (ClockBoost clock 16 90 actor equals 2) 10 48 quency (ClockBoost clock 10 48 actor equals 4) 20 20			
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	48	MHz	
t _{outduty}	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%	
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2)		25,000 (3)	PPM	
t _R	Input rise time		5	ns	
t _F	Input fall time		5	ns	
t _{LOCK}	Time required for ClockLock/ClockBoost to acquire lock (4)		10	μs	

٦

Table 2	Table 26. APEX 20K 5.0-V Tolerant Device CapacitanceNotes (2), (14)										
Symbol	Parameter	Conditions	Min	Max	Unit						
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF						
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF						
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF						

Notes to Tables 23 through 26:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- All APEX 20K devices are 5.0-V tolerant. (2)
- (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- Numbers in parentheses are for industrial-temperature-range devices. (4)
- Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. (5)
- All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are (6) powered.
- (7)Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ or 3.3 V.
- These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on (8)page 62.
- (9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 33 on page 68.
- (10) The I_{OH} parameter refers to high-level TTL, PCI or CMOS output current.
- (11) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (12) This value is specified for normal device operation. The value may vary during power-up.
- (13) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO} .
- (14) Capacitance is sample-tested only.

Tables 27 through 30 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KE devices.

Table 2	Table 27. APEX 20KE Device Absolute Maximum Ratings Note (1)										
Symbol	Parameter	Conditions	Min	Max	Unit						
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	2.5	V						
V _{CCIO}			-0.5	4.6	V						
VI	DC input voltage		-0.5	4.6	V						
I _{OUT}	DC output current, per pin		-25	25	mA						
T _{STG}	Storage temperature	No bias	-65	150	°C						
T _{AMB}	Ambient temperature	Under bias	-65	135	°C						
Τ _J	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C						
		Ceramic PGA packages, under bias		150	°C						

Figures 38 and 39 show the asynchronous and synchronous timing waveforms, respectively, for the ESB macroparameters in Table 31.

Figure 38. ESB Asynchronous Timing Waveforms

Figure 40. Synchronous Bidirectional Pin External Timing

Notes to Figure 40:

- (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software.
- (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells= Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells= ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade.

Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68.

Table 31. APEX 20K f _{MAX} Timing Parameters (Part 1 of 2)								
Symbol	Parameter							
t _{SU}	LE register setup time before clock							
t _H	LE register hold time after clock							
t _{CO}	LE register clock-to-output delay							
t _{LUT}	LUT delay for data-in							
t _{ESBRC}	ESB Asynchronous read cycle time							
t _{ESBWC}	ESB Asynchronous write cycle time							
t _{ESBWESU}	ESB WE setup time before clock when using input register							
t _{ESBDATASU}	ESB data setup time before clock when using input register							
t _{ESBDATAH}	ESB data hold time after clock when using input register							
t _{ESBADDRSU}	ESB address setup time before clock when using input registers							
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers							

Notes to Tables 43 through 48:

- (1) This parameter is measured without using ClockLock or ClockBoost circuits.
- (2) This parameter is measured using ClockLock or ClockBoost circuits.

Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices.

Table 49. EP20K30E f _{MAX} LE Timing Microparameters										
Symbol		-1		-2		-3				
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.01		0.02		0.02		ns			
t _H	0.11		0.16		0.23		ns			
t _{CO}		0.32		0.45		0.67	ns			
t _{LUT}		0.85		1.20		1.77	ns			

Table 60. EP20K60E External Bidirectional Timing Parameters											
Symbol	-	1	-:	2	-	Unit					
	Min	Max	Min	Max	Min	Max					
t _{insubidir}	2.77		2.91		3.11		ns				
t _{inhbidir}	0.00		0.00		0.00		ns				
t _{outcobidir}	2.00	4.84	2.00	5.31	2.00	5.81	ns				
t _{xzbidir}		6.47		7.44		8.65	ns				
t _{zxbidir}		6.47		7.44		8.65	ns				
t _{insubidirpll}	3.44		3.24		-		ns				
t _{inhbidirpll}	0.00		0.00		-		ns				
t _{outcobidirpll}	0.50	3.37	0.50	3.69	-	-	ns				
t _{XZBIDIRPLL}		5.00		5.82		-	ns				
t _{ZXBIDIRPLL}		5.00		5.82		-	ns				

Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices.

Table 61. EP20K100E f _{MAX} LE Timing Microparameters										
Symbol		-1		-2	-	3	Unit			
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.25		0.25		0.25		ns			
t _H	0.25		0.25		0.25		ns			
t _{CO}		0.28		0.28		0.34	ns			
t _{LUT}		0.80		0.95		1.13	ns			

Tables 67 through 72 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K160E APEX 20KE devices.

Table 67. EP20K160E f _{MAX} LE Timing Microparameters											
Symbol		-1		-2		-3					
	Min	Max	Min	Max	Min	Max					
t _{SU}	0.22		0.24		0.26		ns				
t _H	0.22		0.24		0.26		ns				
t _{CO}		0.25		0.31		0.35	ns				
t _{LUT}		0.69		0.88		1.12	ns				

APEX 20K Programmable Logic Device Family Data Sheet

Table 99. EP20K1000E f _{MAX} Routing Delays										
Symbol	-1 Spe	eed Grade -2 Speed Grade -3 Speed Grade		d Grade	Unit					
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.27		0.27		0.27	ns			
t _{F5-20}		1.45		1.63		1.75	ns			
t _{F20+}		4.15		4.33		4.97	ns			

Table 100. EP20K1000E Minimum Pulse Width Timing Parameters									
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		-3 Speed Grade			
	Min	Max	Min	Max	Min	Max			
t _{CH}	1.25		1.43		1.67		ns		
t _{CL}	1.25		1.43		1.67		ns		
t _{CLRP}	0.20		0.20		0.20		ns		
t _{PREP}	0.20		0.20		0.20		ns		
t _{ESBCH}	1.25		1.43		1.67		ns		
t _{ESBCL}	1.25		1.43		1.67		ns		
t _{ESBWP}	1.28		1.51		1.65		ns		
t _{ESBRP}	1.11		1.29		1.41		ns		

Table 101. EP20K1000E External Timing Parameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSU}	2.70		2.84		2.97		ns	
t _{INH}	0.00		0.00		0.00		ns	
t _{outco}	2.00	5.75	2.00	6.33	2.00	6.90	ns	
t _{INSUPLL}	1.64		2.09		-		ns	
t _{INHPLL}	0.00		0.00		-		ns	
t _{outcopll}	0.50	2.25	0.50	2.99	-	-	ns	

Table 106. EP20K1500E Minimum Pulse Width Timing Parameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.25		1.43		1.67		ns	
t _{CL}	1.25		1.43		1.67		ns	
t _{CLRP}	0.20		0.20		0.20		ns	
t _{PREP}	0.20		0.20		0.20		ns	
t _{ESBCH}	1.25		1.43		1.67		ns	
t _{ESBCL}	1.25		1.43		1.67		ns	
t _{ESBWP}	1.28		1.51		1.65		ns	
t _{ESBRP}	1.11		1.29		1.41		ns	

Table 107. EP20K1500E External Timing Parameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{INSU}	3.09		3.30		3.58		ns	
t _{INH}	0.00		0.00		0.00		ns	
tоитсо	2.00	6.18	2.00	6.81	2.00	7.36	ns	
tINSUPLL	1.94		2.08		-		ns	
t _{INHPLL}	0.00		0.00		-		ns	
t outcopll	0.50	2.67	0.50	2.99	-	-	ns	

Revision History

The information contained in the *APEX 20K Programmable Logic Device Family Data Sheet* version 5.1 supersedes information published in previous versions.

Version 5.1

APEX 20K Programmable Logic Device Family Data Sheet version 5.1 contains the following changes:

- In version 5.0, the VI input voltage spec was updated in Table 28 on page 63.
- In version 5.0, *Note* (5) to Tables 27 through 30 was revised.
- Added *Note* (2) to Figure 21 on page 33.

Version 5.0

APEX 20K Programmable Logic Device Family Data Sheet version 5.0 contains the following changes:

- Updated Tables 23 through 26. Removed 2.5-V operating condition tables because all APEX 20K devices are now 5.0-V tolerant.
- Updated conditions in Tables 33, 38 and 39.
- Updated data for t_{ESBDATAH} parameter.

Version 4.3

APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains the following changes:

- Updated Figure 20.
- Updated *Note* (2) to Table 13.
- Updated notes to Tables 27 through 30.

Version 4.2

APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains the following changes:

- Updated Figure 29.
- Updated *Note* (1) to Figure 29.