Welcome to **E-XFL.COM** ## Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 832 | | Number of Logic Elements/Cells | 8320 | | Total RAM Bits | 106496 | | Number of I/O | 376 | | Number of Gates | 526000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 484-BBGA | | Supplier Device Package | 484-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k200efc484-2x | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong # General Description APEXTM 20K devices are the first PLDs designed with the MultiCore architecture, which combines the strengths of LUT-based and product-term-based devices with an enhanced memory structure. LUT-based logic provides optimized performance and efficiency for data-path, register-intensive, mathematical, or digital signal processing (DSP) designs. Product-term-based logic is optimized for complex combinatorial paths, such as complex state machines. LUT- and product-term-based logic combined with memory functions and a wide variety of MegaCore and AMPP functions make the APEX 20K device architecture uniquely suited for system-on-a-programmable-chip designs. Applications historically requiring a combination of LUT-, product-term-, and memory-based devices can now be integrated into one APEX 20K device. APEX 20KE devices are a superset of APEX 20K devices and include additional features such as advanced I/O standard support, CAM, additional global clocks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices extend the APEX 20K family to 1.5 million gates. APEX 20KE devices are denoted with an "E" suffix in the device name (e.g., the EP20K1000E device is an APEX 20KE device). Table 8 compares the features included in APEX 20K and APEX 20KE devices. All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required. APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy. After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications. APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations. The Quartus II software provides NativeLink interfaces to other industry-standard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture. Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions. Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs. If both the rising and falling edges of a clock are used in a LAB, both LAB-wide clock signals are used. The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit. Figure 4. LAB Control Signal Generation #### Notes to Figure 4: - (1) APEX 20KE devices have four dedicated clocks. - (2) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB. - (3) The SYNCCLR signal can be generated by the local interconnect or global signals. ## Logic Element The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5. Figure 5. APEX 20K Logic Element Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE. #### LE Operating Modes The APEX 20K LE can operate in one of the following three modes: - Normal mode - Arithmetic mode - Counter mode Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes. Select Vertical I/O Pins IOE IOE FastRow Interconnect IOE IOE Drive Local Interconnect FastRow Drives Local Interconnect and FastRow Interconnect in Two MegaLAB Structures Interconnect Local Interconnect LEs MegaLAB MegaLAB *LABs* Figure 12. APEX 20KE FastRow Interconnect Table 9 summarizes how various elements of the APEX 20K architecture drive each other. ## Input/Output Clock Mode The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode. Figure 21. ESB in Input/Output Clock Mode Note (1) Notes to Figure 21: - (1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. - (2) APEX 20KE devices have four dedicated clocks. ## Single-Port Mode The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22. For more information on APEX 20KE devices and CAM, see *Application Note 119 (Implementing High-Speed Search Applications with APEX CAM).* ## **Driving Signals to the ESB** ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic. Figure 24. ESB Control Signal Generation Note to Figure 24: (1) APEX 20KE devices have four dedicated clocks. An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device. | | | Pevice Recommended Operating Conditio | 1 | ,
B# | | |--------------------|---|---------------------------------------|------------------|-------------------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage for internal logic and input buffers | (4), (5) | 2.375
(2.375) | 2.625
(2.625) | V | | V _{CCIO} | Supply voltage for output buffers, 3.3-V operation | (4), (5) | 3.00 (3.00) | 3.60 (3.60) | ٧ | | | Supply voltage for output buffers, 2.5-V operation | (4), (5) | 2.375
(2.375) | 2.625
(2.625) | V | | V _I | Input voltage | (3), (6) | -0.5 | 5.75 | V | | Vo | Output voltage | | 0 | V _{CCIO} | V | | T _J | Junction temperature | For commercial use | 0 | 85 | °C | | | | For industrial use | -40 | 100 | °C | | t _R | Input rise time | | | 40 | ns | | t _F | Input fall time | | | 40 | ns | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-----------------|--------------------------------------|--|----------------------------------|-----|----------------------------------|------| | V _{IH} | High-level input voltage | | 1.7, 0.5 × V _{CCIO} (9) | | 5.75 | ٧ | | V _{IL} | Low-level input voltage | | -0.5 | | 0.8, 0.3 × V _{CCIO} (9) | V | | V _{OH} | 3.3-V high-level TTL output voltage | I _{OH} = -8 mA DC,
V _{CCIO} = 3.00 V (10) | 2.4 | | | ٧ | | | 3.3-V high-level CMOS output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 3.00 V (10) | V _{CCIO} - 0.2 | | | V | | | 3.3-V high-level PCI output voltage | $I_{OH} = -0.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$
(10) | 0.9 × V _{CCIO} | | | V | | | 2.5-V high-level output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 2.30 V (10) | 2.1 | | | ٧ | | | | I _{OH} = -1 mA DC,
V _{CCIO} = 2.30 V (10) | 2.0 | | | ٧ | | | | I _{OH} = -2 mA DC,
V _{CCIO} = 2.30 V (10) | 1.7 | | | ٧ | For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).* | Table 30. | Table 30. APEX 20KE Device Capacitance Note (15) | | | | | | | | |--------------------|--|-------------------------------------|-----|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | #### Notes to Tables 27 through 30: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle. Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10% - (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60. - (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V. - (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL. - (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (13) This value is specified for normal device operation. The value may vary during power-up. - (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}. - (15) Capacitance is sample-tested only. Figure 33 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance on APEX 20K devices. All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength. Figure 36 shows the f_{MAX} timing model for APEX 20K devices. Figure 37 shows the f_{MAX} timing model for APEX 20KE devices. These parameters can be used to estimate f_{MAX} for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information. Tables 40 through 42 show the $f_{\mbox{\scriptsize MAX}}$ timing parameters for EP20K100, EP20K200, and EP20K400 APEX 20K devices. | Symbol | -1 Spee | d Grade | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | |-------------------------|---------|---------|---------|----------------|-----|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.5 | | 0.6 | | 0.8 | | ns | | t _H | 0.7 | | 0.8 | | 1.0 | | ns | | t _{CO} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LUT} | | 0.8 | | 1.0 | | 1.3 | ns | | t _{ESBRC} | | 1.7 | | 2.1 | | 2.4 | ns | | t _{ESBWC} | | 5.7 | | 6.9 | | 8.1 | ns | | t _{ESBWESU} | 3.3 | | 3.9 | | 4.6 | | ns | | t _{ESBDATASU} | 2.2 | | 2.7 | | 3.1 | | ns | | t _{ESBDATAH} | 0.6 | | 0.8 | | 0.9 | | ns | | t _{ESBADDRSU} | 2.4 | | 2.9 | | 3.3 | | ns | | t _{ESBDATACO1} | | 1.3 | | 1.6 | | 1.8 | ns | | t _{ESBDATACO2} | | 2.6 | | 3.1 | | 3.6 | ns | | t _{ESBDD} | | 2.5 | | 3.3 | | 3.6 | ns | | t _{PD} | | 2.5 | | 3.0 | | 3.6 | ns | | t _{PTERMSU} | 2.3 | | 2.6 | | 3.2 | | ns | | t _{PTERMCO} | | 1.5 | | 1.8 | | 2.1 | ns | | t _{F1-4} | | 0.5 | | 0.6 | | 0.7 | ns | | t _{F5-20} | | 1.6 | | 1.7 | | 1.8 | ns | | t _{F20+} | | 2.2 | | 2.2 | | 2.3 | ns | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{CLRP} | 0.3 | | 0.4 | | 0.4 | | ns | | t _{PREP} | 0.5 | | 0.5 | | 0.5 | | ns | | t _{ESBCH} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{ESBCL} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{ESBWP} | 1.6 | | 1.9 | | 2.2 | | ns | | t _{ESBRP} | 1.0 | | 1.3 | | 1.4 | _ | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |-----------------------------|----------------|-----|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.1 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCOBIDIR} (2) | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 47. EP20K400 External Timing Parameters | | | | | | | | | |---|----------------|-----|---------|----------|----------------|-----|------|--| | Symbol | -1 Speed Grade | | -2 Spec | ed Grade | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | t _{OUTCO} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | | t _{INSU} (2) | 0.4 | | 1.0 | | - | | ns | | | t _{INH} (2) | 0.0 | | 0.0 | | _ | | ns | | | t _{OUTCO} (2) | 0.5 | 3.1 | 0.5 | 4.1 | _ | _ | ns | | | Table 48. EP20K400 External Bidirections | I Timina | Parameters 1 4 1 | |--|----------|------------------| |--|----------|------------------| | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spe | ed Grade | Unit | |-----------------------------|---------|---------|---------|----------|--------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | t _{XZBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{ZXBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{INSUBIDIR} (2) | 0.5 | | 1.0 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir (2) | 0.5 | 3.1 | 0.5 | 4.1 | - | - | ns | | t _{XZBIDIR} (2) | | 6.2 | | 7.6 | | - | ns | | t _{ZXBIDIR} (2) | | 6.2 | | 7.6 | | _ | ns | #### Notes to Tables 43 through 48: - (1) This parameter is measured without using ClockLock or ClockBoost circuits. - (2) This parameter is measured using ClockLock or ClockBoost circuits. Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices. | Table 49. EP20K30E f _{MAX} LE Timing Microparameters | | | | | | | | | | |---|------|------|------|------|------|------|----|--|------| | Symbol | _ | 1 | - | 2 | -3 | | -3 | | Unit | | | Min | Max | Min | Max | Min | Max | 1 | | | | t _{SU} | 0.01 | | 0.02 | | 0.02 | | ns | | | | t _H | 0.11 | | 0.16 | | 0.23 | | ns | | | | t _{CO} | | 0.32 | | 0.45 | | 0.67 | ns | | | | t _{LUT} | | 0.85 | | 1.20 | | 1.77 | ns | | | | Table 76. EP20K200E Minimum Pulse Width Timing Parameters | | | | | | | | | |---|------|-----|------|-----|------|-----|------|--| | Symbol | -1 | | - | 2 | -: | 3 | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{CH} | 1.36 | | 2.44 | | 2.65 | | ns | | | t _{CL} | 1.36 | | 2.44 | | 2.65 | | ns | | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | | t _{ESBCH} | 1.36 | | 2.44 | | 2.65 | | ns | | | t _{ESBCL} | 1.36 | | 2.44 | | 2.65 | | ns | | | t _{ESBWP} | 1.18 | | 1.48 | | 1.76 | | ns | | | t _{ESBRP} | 0.95 | | 1.17 | | 1.41 | | ns | | | Symbol | -1 | | - | 2 | -3 | | Unit | | |-----------------------|------|------|------|------|------|------|------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} | 2.24 | | 2.35 | | 2.47 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{outco} | 2.00 | 5.12 | 2.00 | 5.62 | 2.00 | 6.11 | ns | | | t _{INSUPLL} | 2.13 | | 2.07 | | - | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | | t _{OUTCOPLL} | 0.50 | 3.01 | 0.50 | 3.36 | - | - | ns | | | Symbol | -1 | | -2 | | -3 | | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.79 | | 2.44 | | 3.25 | ns | | t _{ESBSRC} | | 2.40 | | 3.12 | | 4.01 | ns | | t _{ESBAWC} | | 3.41 | | 4.65 | | 6.20 | ns | | t _{ESBSWC} | | 3.68 | | 4.68 | | 5.93 | ns | | t _{ESBWASU} | 1.55 | | 2.12 | | 2.83 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.71 | | 2.33 | | 3.11 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.72 | | 2.34 | | 3.13 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.63 | | 2.36 | | 3.28 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.07 | | 0.39 | | 0.80 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.27 | | 0.67 | | 1.17 | | ns | | t _{ESBRADDRSU} | 0.34 | | 0.75 | | 1.28 | | ns | | t _{ESBDATACO1} | | 1.03 | | 1.20 | | 1.40 | ns | | t _{ESBDATACO2} | | 2.33 | | 3.18 | | 4.24 | ns | | t _{ESBDD} | | 3.41 | | 4.65 | | 6.20 | ns | | t _{PD} | | 1.68 | | 2.29 | | 3.06 | ns | | t _{PTERMSU} | 0.96 | | 1.48 | | 2.14 | | ns | | t _{PTERMCO} | | 1.05 | | 1.22 | | 1.42 | ns | | Table 81. EP20K300E f _{MAX} Routing Delays | | | | | | | | | |---|-----|------|-----|------|-----|------|------|--| | Symbol | -1 | | -2 | | -3 | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{F1-4} | | 0.22 | | 0.24 | | 0.26 | ns | | | t _{F5-20} | | 1.33 | | 1.43 | | 1.58 | ns | | | t _{F20+} | | 3.63 | | 3.93 | | 4.35 | ns | | | Table 87. EP20K400E f _{MAX} Routing Delays | | | | | | | | | |---|---------|----------------------|-----|------------------------|-----|---------|------|--| | Symbol | -1 Spee | eed Grade -2 Speed (| | d Grade -3 Speed Grade | | d Grade | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{F1-4} | | 0.25 | | 0.25 | | 0.26 | ns | | | t _{F5-20} | | 1.01 | | 1.12 | | 1.25 | ns | | | t _{F20+} | | 3.71 | | 3.92 | | 4.17 | ns | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |--------------------|----------------|-----|----------------|-----|----------------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.36 | | 2.22 | | 2.35 | | ns | | t _{CL} | 1.36 | | 2.26 | | 2.35 | | ns | | t _{CLRP} | 0.18 | | 0.18 | | 0.19 | | ns | | t _{PREP} | 0.18 | | 0.18 | | 0.19 | | ns | | t _{ESBCH} | 1.36 | | 2.26 | | 2.35 | | ns | | t _{ESBCL} | 1.36 | | 2.26 | | 2.35 | | ns | | t _{ESBWP} | 1.17 | | 1.38 | | 1.56 | | ns | | t _{ESBRP} | 0.94 | | 1.09 | | 1.25 | | ns | | Table 89. EP20K400E External Timing Parameters | | | | | | | | | |--|----------------|------|----------------|------|----------------|------|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{INSU} | 2.51 | | 2.64 | | 2.77 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{OUTCO} | 2.00 | 5.25 | 2.00 | 5.79 | 2.00 | 6.32 | ns | | | t _{INSUPLL} | 3.221 | | 3.38 | | - | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | | toutcople | 0.50 | 2.25 | 0.50 | 2.45 | - | - | ns | | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Speed Grade | | Unit | |---------------------------|----------------|------|---------|---------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.93 | | 3.23 | | 3.44 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.25 | 2.00 | 5.79 | 2.00 | 6.32 | ns | | t _{XZBIDIR} | | 5.95 | | 6.77 | | 7.12 | ns | | tzxbidir | | 5.95 | | 6.77 | | 7.12 | ns | | t _{INSUBIDIRPLL} | 4.31 | | 4.76 | | - | | ns | | tinhbidirpll | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 2.25 | 0.50 | 2.45 | - | - | ns | | txzbidirpll | | 2.94 | | 3.43 | | - | ns | | tzxbidirpll | | 2.94 | | 3.43 | | - | ns | Tables 91 through 96 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K600E APEX 20KE devices. | Table 91. EP20K600E f _{MAX} LE Timing Microparameters | | | | | | | | | |--|----------------|------|----------------|------|----------------|------|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | 1 | | | t _{SU} | 0.16 | | 0.16 | | 0.17 | | ns | | | t _H | 0.29 | | 0.33 | | 0.37 | | ns | | | t _{CO} | | 0.65 | | 0.38 | | 0.49 | ns | | | t _{LUT} | | 0.70 | | 1.00 | | 1.30 | ns | | Tables 97 through 102 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices. | Table 97. EP20K1000E f _{MAX} LE Timing Microparameters | | | | | | | | | |---|---------|---------|----------------|------|----------------|------|------|--| | Symbol | -1 Spee | d Grade | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | 0.25 | | 0.25 | | 0.25 | | ns | | | t _H | 0.25 | | 0.25 | | 0.25 | | ns | | | t _{CO} | | 0.28 | | 0.32 | | 0.33 | ns | | | t _{LUT} | | 0.80 | | 0.95 | | 1.13 | ns | | SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files. ## **Configuration Schemes** The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up. Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 111. Data Sources for Configuration | | | | | | |---|--|--|--|--|--| | Configuration Scheme | Data Source | | | | | | Configuration device | EPC1, EPC2, EPC16 configuration devices | | | | | | Passive serial (PS) | MasterBlaster or ByteBlasterMV download cable or serial data source | | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | | JTAG | MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File | | | | | For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*) ## **Device Pin-Outs** See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information