Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|-------------------------------------------------------------| | Product Status | Obsolete | | Number of LABs/CLBs | 832 | | Number of Logic Elements/Cells | 8320 | | Total RAM Bits | 106496 | | Number of I/O | 376 | | Number of Gates | 526000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 484-BBGA | | Supplier Device Package | 484-FBGA (23x23) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k200efi484-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 5. APEX 20K F | ineLine BGA Pack | age Options & I/C | O Count Note | s (1), (2) | | |---------------------|------------------|-------------------|--------------|----------------|-----------| | Device | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | EP20K30E | 93 | 128 | | | | | EP20K60E | 93 | 196 | | | | | EP20K100 | | 252 | | | | | EP20K100E | 93 | 246 | | | | | EP20K160E | | | 316 | | | | EP20K200 | | | 382 | | | | EP20K200E | | | 376 | 376 | | | EP20K300E | | | | 408 | | | EP20K400 | | | | 502 <i>(3)</i> | | | EP20K400E | | | | 488 (3) | | | EP20K600E | | | | 508 (3) | 588 | | EP20K1000E | | | | 508 (3) | 708 | | EP20K1500E | | | | | 808 | #### Notes to Tables 4 and 5: - (1) I/O counts include dedicated input and clock pins. - (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages. - (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information. | Table 6. APEX 20K QFP, BGA & PGA Package Sizes | | | | | | | | | |--------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|--|--| | Feature | 144-Pin TQFP | 208-Pin QFP | 240-Pin QFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA | | | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.27 | 1.27 | _ | | | | Area (mm ²) | 484 | 924 | 1,218 | 1,225 | 2,025 | 3,906 | | | | $\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 22 × 22 | 30.4 × 30.4 | 34.9 × 34.9 | 35 × 35 | 45 × 45 | 62.5 × 62.5 | | | | Table 7. APEX 20K FineLine BGA Package Sizes | | | | | | | | |----------------------------------------------|---------|---------|---------|---------|-----------|--|--| | Feature | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | | | Pitch (mm) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | Area (mm ²) | 169 | 361 | 529 | 729 | 1,089 | | | | $Length \times Width (mm \times mm)$ | 13 × 13 | 19×19 | 23 × 23 | 27 × 27 | 33 × 33 | | | APEX 20K devices provide two dedicated clock pins and four dedicated input pins that drive register control inputs. These signals ensure efficient distribution of high-speed, low-skew control signals. These signals use dedicated routing channels to provide short delays and low skews. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider or internally generated asynchronous clear signals with high fan-out. The dedicated clock pins featured on the APEX 20K devices can also feed logic. The devices also feature ClockLock and ClockBoost clock management circuitry. APEX 20KE devices provide two additional dedicated clock pins, for a total of four dedicated clock pins. ## MegaLAB Structure APEX 20K devices are constructed from a series of MegaLABTM structures. Each MegaLAB structure contains a group of logic array blocks (LABs), one ESB, and a MegaLAB interconnect, which routes signals within the MegaLAB structure. The EP20K30E device has 10 LABs, EP20K60E through EP20K600E devices have 16 LABs, and the EP20K1000E and EP20K1500E devices have 24 LABs. Signals are routed between MegaLAB structures and I/O pins via the FastTrack Interconnect. In addition, edge LABs can be driven by I/O pins through the local interconnect. Figure 2 shows the MegaLAB structure. Figure 2. MegaLAB Structure Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions. Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs. If both the rising and falling edges of a clock are used in a LAB, both LAB-wide clock signals are used. The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit. Figure 4. LAB Control Signal Generation #### Notes to Figure 4: - (1) APEX 20KE devices have four dedicated clocks. - (2) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB. - (3) The SYNCCLR signal can be generated by the local interconnect or global signals. # Logic Element The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5. Figure 5. APEX 20K Logic Element Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE. The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. #### Clear & Preset Logic Control Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NoT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NoT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted. In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset. #### FastTrack Interconnect In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9. Figure 9. APEX 20K Interconnect Structure A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure. A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows. Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures. Figure 10. FastTrack Connection to Local Interconnect Figure 13. Product-Term Logic in ESB Note to Figure 13: (1) APEX 20KE devices have four dedicated clocks. ### Macrocells APEX 20K macrocells can be configured individually for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Combinatorial logic is implemented in the product terms. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as parallel expanders to be used to increase the logic available to another macrocell. One product term can be inverted; the Quartus II software uses this feature to perform DeMorgan's inversion for more efficient implementation of wide OR functions. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Figure 14 shows the APEX 20K macrocell. Figure 26. APEX 20KE Bidirectional I/O Registers Notes (1), (2) Row, Column, FastRow, 4 Dedicated or Local Interconnect Clock Inputs Notes to Figure 26: - (1) This programmable delay has four settings: off and three levels of delay. - (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. # Advanced I/O Standard Support APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II. For more information on I/O standards supported by APEX 20KE devices, see *Application Note 117 (Using Selectable I/O Standards in Altera Devices)*. The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support. Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs. When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks. Figure 32. APEX 20K AC Test Conditions Note (1) #### Note to Figure 32: (1) Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. # Operating Conditions Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices. | Table 2 | 3. APEX 20K 5.0-V Tolerant L | Device Absolute Maximum Ratings N | otes (1), (2) | | | |--------------------|------------------------------|------------------------------------------------|---------------|------|------| | Symbol | Parameter | Conditions | Min | Max | Unit | | V _{CCINT} | Supply voltage | With respect to ground (3) | -0.5 | 3.6 | V | | V _{CCIO} | | | -0.5 | 4.6 | V | | V _I | DC input voltage | | -2.0 | 5.75 | V | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | T _{AMB} | Ambient temperature | Under bias | -65 | 135 | ° C | | TJ | Junction temperature | PQFP, RQFP, TQFP, and BGA packages, under bias | | 135 | ° C | | | | Ceramic PGA packages, under bias | | 150 | °C | Figure 40. Synchronous Bidirectional Pin External Timing #### *Notes to Figure 40:* - (1) The output enable and input registers are LE registers in the LAB adjacent to a bidirectional row pin. The output enable register is set with "Output Enable Routing= Signal-Pin" option in the Quartus II software. - (2) The LAB adjacent input register is set with "Decrease Input Delay to Internal Cells=Off". This maintains a zero hold time for lab adjacent registers while giving a fast, position independent setup time. A faster setup time with zero hold time is possible by setting "Decrease Input Delay to Internal Cells=ON" and moving the input register farther away from the bidirectional pin. The exact position where zero hold occurs with the minimum setup time, varies with device density and speed grade. Table 31 describes the f_{MAX} timing parameters shown in Figure 36 on page 68. | Symbol | Parameter | | | | | | |-------------------------|----------------------------------------------------------------|--|--|--|--|--| | t _{SU} | LE register setup time before clock | | | | | | | t _H | LE register hold time after clock | | | | | | | t _{CO} | LE register clock-to-output delay | | | | | | | t _{LUT} | LUT delay for data-in | | | | | | | t _{ESBRC} | ESB Asynchronous read cycle time | | | | | | | t _{ESBWC} | ESB Asynchronous write cycle time | | | | | | | t _{ESBWESU} | ESB WE setup time before clock when using input register | | | | | | | t _{ESBDATASU} | ESB data setup time before clock when using input register | | | | | | | t _{ESBDATAH} | ESB data hold time after clock when using input register | | | | | | | t _{ESBADDRSU} | ESB address setup time before clock when using input registers | | | | | | | t _{ESBDATACO1} | ESB clock-to-output delay when using output registers | | | | | | | Table 36. APEX 20KE Routing Timing Microparameters Note (1) | | | | | |-------------------------------------------------------------|----------------------------------------------------|--|--|--| | Symbol | Parameter | | | | | t _{F1-4} | Fanout delay using Local Interconnect | | | | | t _{F5-20} | Fanout delay estimate using MegaLab Interconnect | | | | | t _{F20+} | Fanout delay estimate using FastTrack Interconnect | | | | #### Note to Table 36: (1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. | Table 37. APE | Table 37. APEX 20KE Functional Timing Microparameters | | | | | |---------------|-------------------------------------------------------|--|--|--|--| | Symbol | Parameter | | | | | | TCH | Minimum clock high time from clock pin | | | | | | TCL | Minimum clock low time from clock pin | | | | | | TCLRP | LE clear Pulse Width | | | | | | TPREP | LE preset pulse width | | | | | | TESBCH | Clock high time for ESB | | | | | | TESBCL | Clock low time for ESB | | | | | | TESBWP | Write pulse width | | | | | | TESBRP | Read pulse width | | | | | Tables 38 and 39 describe the APEX 20KE external timing parameters. | Table 38. APEX 20KE External Timing Parameters Note (1) | | | | | | |---------------------------------------------------------|----------------------------------------------------------------|------------|--|--|--| | Symbol | Clock Parameter | Conditions | | | | | t _{INSU} | Setup time with global clock at IOE input register | | | | | | t _{INH} | Hold time with global clock at IOE input register | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE output register | C1 = 10 pF | | | | | t _{INSUPLL} | Setup time with PLL clock at IOE input register | | | | | | t _{INHPLL} | Hold time with PLL clock at IOE input register | | | | | | t _{OUTCOPLL} | Clock-to-output delay with PLL clock at IOE output register | C1 = 10 pF | | | | | Symbol | -1 | | - | -2 | | -3 | | |--------------------|------|-----|------|-----|------|-----|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{CH} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{CL} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{CLRP} | 0.22 | | 0.31 | | 0.46 | | ns | | t _{PREP} | 0.22 | | 0.31 | | 0.46 | | ns | | t _{ESBCH} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{ESBCL} | 0.55 | | 0.78 | | 1.15 | | ns | | t _{ESBWP} | 1.43 | | 2.01 | | 2.97 | | ns | | t _{ESBRP} | 1.15 | | 1.62 | | 2.39 | | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |-----------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.02 | | 2.13 | | 2.24 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{outco} | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t _{INSUPLL} | 2.11 | | 2.23 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | t _{OUTCOPLL} | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |----------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 1.85 | | 1.77 | | 1.54 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 4.88 | 2.00 | 5.36 | 2.00 | 5.88 | ns | | t _{XZBIDIR} | | 7.48 | | 8.46 | | 9.83 | ns | | t _{ZXBIDIR} | | 7.48 | | 8.46 | | 9.83 | ns | | t _{INSUBIDIRPLL} | 4.12 | | 4.24 | | = | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | t _{OUTCOBIDIRPLL} | 0.50 | 2.60 | 0.50 | 2.88 | - | - | ns | | t _{XZBIDIRPLL} | | 5.21 | | 5.99 | | - | ns | | t _{ZXBIDIRPLL} | | 5.21 | | 5.99 | | - | ns | | Symbol | - | 1 | | -2 | ; | 3 | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.83 | | 2.57 | | 3.79 | ns | | t _{ESBSRC} | | 2.46 | | 3.26 | | 4.61 | ns | | t _{ESBAWC} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{ESBSWC} | | 3.77 | | 4.90 | | 6.79 | ns | | t _{ESBWASU} | 1.59 | | 2.23 | | 3.29 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.75 | | 2.46 | | 3.62 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.76 | | 2.47 | | 3.64 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.68 | | 2.49 | | 3.87 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.08 | | 0.43 | | 1.04 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.29 | | 0.72 | | 1.46 | | ns | | t _{ESBRADDRSU} | 0.36 | | 0.81 | | 1.58 | | ns | | t _{ESBDATACO1} | | 1.06 | | 1.24 | | 1.55 | ns | | t _{ESBDATACO2} | | 2.39 | | 3.35 | | 4.94 | ns | | t _{ESBDD} | | 3.50 | | 4.90 | | 7.23 | ns | | t _{PD} | | 1.72 | | 2.41 | | 3.56 | ns | | t _{PTERMSU} | 0.99 | | 1.56 | | 2.55 | | ns | | t _{PTERMCO} | | 1.07 | | 1.26 | | 1.08 | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |----------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.77 | | 2.91 | | 3.11 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 4.84 | 2.00 | 5.31 | 2.00 | 5.81 | ns | | t _{XZBIDIR} | | 6.47 | | 7.44 | | 8.65 | ns | | t _{ZXBIDIR} | | 6.47 | | 7.44 | | 8.65 | ns | | t _{INSUBIDIRPLL} | 3.44 | | 3.24 | | - | | ns | | tinhbidirpll | 0.00 | | 0.00 | | - | | ns | | t _{OUTCOBIDIRPLL} | 0.50 | 3.37 | 0.50 | 3.69 | - | - | ns | | txzbidirpll | | 5.00 | | 5.82 | | - | ns | | tzxbidirpll | | 5.00 | | 5.82 | | - | ns | Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices. | Table 61. EP2 | OK100E f _{MAX} | LE Timing Mic | croparameters | 3 | | | | | |------------------|-------------------------|---------------|---------------|------|------|------|------|--| | Symbol | - | 1 | - | 2 | -3 | | Unit | | | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | 0.25 | | 0.25 | | 0.25 | | ns | | | t _H | 0.25 | | 0.25 | | 0.25 | | ns | | | t _{CO} | | 0.28 | | 0.28 | | 0.34 | ns | | | t _{LUT} | | 0.80 | | 0.95 | | 1.13 | ns | | | Table 62. EP20K | I GOL IMAX LOL | , iming mid | 1 | | T | | 1 | |-------------------------|----------------|-------------|-------|------|-------|------|------| | Symbol | - | 1 | | -2 | -: | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.61 | | 1.84 | | 1.97 | ns | | t _{ESBSRC} | | 2.57 | | 2.97 | | 3.20 | ns | | t _{ESBAWC} | | 0.52 | | 4.09 | | 4.39 | ns | | t _{ESBSWC} | | 3.17 | | 3.78 | | 4.09 | ns | | t _{ESBWASU} | 0.56 | | 6.41 | | 0.63 | | ns | | t _{ESBWAH} | 0.48 | | 0.54 | | 0.55 | | ns | | t _{ESBWDSU} | 0.71 | | 0.80 | | 0.81 | | ns | | t _{ESBWDH} | .048 | | 0.54 | | 0.55 | | ns | | t _{ESBRASU} | 1.57 | | 1.75 | | 1.87 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.20 | | ns | | t _{ESBWESU} | 1.54 | | 1.72 | | 1.80 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.16 | | -0.20 | | -0.20 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.12 | | 0.08 | | 0.13 | | ns | | t _{ESBRADDRSU} | 0.17 | | 0.15 | | 0.19 | | ns | | t _{ESBDATACO1} | | 1.20 | | 1.39 | | 1.52 | ns | | t _{ESBDATACO2} | | 2.54 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.06 | | 3.56 | | 3.85 | ns | | t _{PD} | | 1.73 | | 2.02 | | 2.20 | ns | | t _{PTERMSU} | 1.11 | | 1.26 | | 1.38 | | ns | | t _{PTERMCO} | | 1.19 | | 1.40 | | 1.08 | ns | | Table 63. EP2 | Table 63. EP20K100E f _{MAX} Routing Delays | | | | | | | | | | | |--------------------|-----------------------------------------------------|------|-----|------|-----|------|----|--|--|--|--| | Symbol | - | -1 | | -2 | | -3 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | | t _{F1-4} | | 0.24 | | 0.27 | | 0.29 | ns | | | | | | t _{F5-20} | | 1.04 | | 1.26 | | 1.52 | ns | | | | | | t _{F20+} | | 1.12 | | 1.36 | | 1.86 | ns | | | | | Tables 97 through 102 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1000E APEX 20KE devices. | Table 97. EP20K1000E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |-----------------------------------------------------------------|---------|---------|----------------|------|----------------|------|------|--|--|--| | Symbol | -1 Spee | d Grade | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | | Min | Max | Min | Max | Min | Max | 7 | | | | | t _{SU} | 0.25 | | 0.25 | | 0.25 | | ns | | | | | t _H | 0.25 | | 0.25 | | 0.25 | | ns | | | | | t _{CO} | | 0.28 | | 0.32 | | 0.33 | ns | | | | | t _{LUT} | | 0.80 | | 0.95 | | 1.13 | ns | | | | | Table 99. EP2 | OK1000E f _{MAX} | Routing Dela | ys | | | | | |--------------------|--------------------------|--------------|---------|----------|---------|----------------|----| | Symbol | -1 Spee | d Grade | -2 Spec | ed Grade | -3 Spee | -3 Speed Grade | | | | Min | Max | Min | Max | Min | Max | | | t _{F1-4} | | 0.27 | | 0.27 | | 0.27 | ns | | t _{F5-20} | | 1.45 | | 1.63 | | 1.75 | ns | | t _{F20+} | | 4.15 | | 4.33 | | 4.97 | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |--------------------|----------------|-----|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CLRP} | 0.20 | | 0.20 | | 0.20 | | ns | | t _{PREP} | 0.20 | | 0.20 | | 0.20 | | ns | | t _{ESBCH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBCL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBWP} | 1.28 | | 1.51 | | 1.65 | | ns | | t _{ESBRP} | 1.11 | | 1.29 | | 1.41 | | ns | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | |-----------------------|----------------|------|---------|----------------|------|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.70 | | 2.84 | | 2.97 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.75 | 2.00 | 6.33 | 2.00 | 6.90 | ns | | t _{INSUPLL} | 1.64 | | 2.09 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | t _{OUTCOPLL} | 0.50 | 2.25 | 0.50 | 2.99 | - | - | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |----------------------------|----------------|------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 3.22 | | 3.33 | | 3.51 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.75 | 2.00 | 6.33 | 2.00 | 6.90 | ns | | t _{XZBIDIR} | | 6.31 | | 7.09 | | 7.76 | ns | | tzxbidir | | 6.31 | | 7.09 | | 7.76 | ns | | t _{INSUBIDIRPL} L | 3.25 | | 3.26 | | | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | | | ns | | toutcobidirpll | 0.50 | 2.25 | 0.50 | 2.99 | | | ns | | txzbidirpll | | 2.81 | | 3.80 | | | ns | | t _{ZXBIDIRPLL} | | 2.81 | | 3.80 | | | ns | Tables 103 through 108 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1500E APEX 20KE devices. | Table 103. EP20K1500E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |------------------------------------------------------------------|----------------|------|----------------|------|----------------|------|------|--|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | | Min | Max | Min | Max | Min | Max |] | | | | | t _{SU} | 0.25 | | 0.25 | | 0.25 | | ns | | | | | t _H | 0.25 | | 0.25 | | 0.25 | | ns | | | | | t _{CO} | | 0.28 | | 0.32 | | 0.33 | ns | | | | | t _{LUT} | | 0.80 | | 0.95 | | 1.13 | ns | | | |