E·XFL

Intel - EP20K200EQC208-2 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	8320
Total RAM Bits	106496
Number of I/O	136
Number of Gates	526000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k200eqc208-2

Email: info@E-XFL.COM

- - --

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5. APEX 20K FineLine BGA Package Options & I/O Count Notes (1), (2)						
Device	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin	
EP20K30E	93	128				
EP20K60E	93	196				
EP20K100		252				
EP20K100E	93	246				
EP20K160E			316			
EP20K200			382			
EP20K200E			376	376		
EP20K300E				408		
EP20K400				502 (3)		
EP20K400E				488 (3)		
EP20K600E				508 (3)	588	
EP20K1000E				508 (3)	708	
EP20K1500E					808	

Notes to Tables 4 and 5:

Г

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

Table 6. APEX 20K QFP, BGA & PGA Package Sizes							
Feature	144-Pin TQFP	208-Pin QFP	240-Pin QFP	356-Pin BGA	652-Pin BGA	655-Pin PGA	
Pitch (mm)	0.50	0.50	0.50	1.27	1.27	-	
Area (mm ²)	484	924	1,218	1,225	2,025	3,906	
$\begin{array}{l} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.4 × 30.4	34.9 × 34.9	35 × 35	45 × 45	62.5 × 62.5	

Table 7. APEX 20K FineLine BGA Package Sizes							
Feature	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin		
Pitch (mm)	1.00	1.00	1.00	1.00	1.00		
Area (mm ²)	169	361	529	729	1,089		
$\text{Length} \times \text{Width} \text{ (mm} \times \text{mm)}$	13 × 13	19×19	23 × 23	27 × 27	33 × 33		

1

Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions.

Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs.

If both the rising and falling edges of a clock are used in a LAB, both LABwide clock signals are used.

The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit.

Figure 4. LAB Control Signal Generation

Notes to Figure 4:

- APEX 20KE devices have four dedicated clocks. (1)
- The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the (2) LAB.
- (3)The SYNCCLR signal can be generated by the local interconnect or global signals.

Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other.

Figure 11. Driving the FastTrack Interconnect

APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow[™] interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect.

The programmable register also supports an asynchronous clear function. Within the ESB, two asynchronous clears are generated from global signals and the local interconnect. Each macrocell can either choose between the two asynchronous clear signals or choose to not be cleared. Either of the two clear signals can be inverted within the ESB. Figure 15 shows the ESB control logic when implementing product-terms.

Figure 15. ESB Product-Term Mode Control Logic

(1) APEX 20KE devices have four dedicated clocks.

Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 32 product terms to feed the macrocell OR logic directly, with two product terms provided by the macrocell and 30 parallel expanders provided by the neighboring macrocells in the ESB.

The Quartus II software Compiler can allocate up to 15 sets of up to two parallel expanders per set to the macrocells automatically. Each set of two parallel expanders incurs a small, incremental timing delay. Figure 16 shows the APEX 20K parallel expanders.

ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's selftimed RAM must only meet the setup and hold time specifications of the global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays.

To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18.

Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software.

Table 10. APEX 20K Programmable Delay Chains				
Programmable Delays	Quartus II Logic Option			
Input pin to core delay	Decrease input delay to internal cells			
Input pin to input register delay	Decrease input delay to input register			
Core to output register delay	Decrease input delay to output register			
Output register t_{CO} delay	Increase delay to output pin			

The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices.

The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up.

Figure 28 shows how a column IOE connects to the interconnect.

Figure 28. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed. For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used.

Table 14. Multiplication Factor Combinations			
Clock 1	Clock 2		
×1	×1		
×1, ×2	×2		
×1, ×2, ×4	×4		

APEX 20KE ClockLock Feature

APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KE PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM.

Clock Multiplication

The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where *m* and *k* range from 2 to 160, and *n* and *v* range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

Table 2	Table 24. APEX 20K 5.0-V Tolerant Device Recommended Operating Conditions Note (2)						
Symbol	Parameter	Conditions	Min	Max	Unit		
V _{CCINT}	Supply voltage for internal logic and input buffers	(4), (5)	2.375 (2.375)	2.625 (2.625)	V		
V _{CCIO}	Supply voltage for output buffers, 3.3-V operation	(4), (5)	3.00 (3.00)	3.60 (3.60)	V		
	Supply voltage for output buffers, 2.5-V operation	(4), (5)	2.375 (2.375)	2.625 (2.625)	V		
VI	Input voltage	(3), (6)	-0.5	5.75	V		
Vo	Output voltage		0	V _{CCIO}	V		
ТJ	Junction temperature	For commercial use	0	85	°C		
		For industrial use	-40	100	°C		
t _R	Input rise time			40	ns		
t _F	Input fall time			40	ns		

Table 25. APEX 20K 5.0-V Tolerant Device DC Operating Conditions (Part 1 of 2) Notes (2), (7), (8)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IH}	High-level input voltage		1.7, 0.5 × V _{CCIO} (9)		5.75	V	
V _{IL}	Low-level input voltage		-0.5		$0.8, 0.3 \times V_{CCIO}$	V	
V _{OH}	3.3-V high-level TTL output voltage	I _{OH} = -8 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	2.4			V	
	3.3-V high-level CMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V <i>(10)</i>	V _{CCIO} – 0.2			V	
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (10)	$0.9 \times V_{CCIO}$			V	
-	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V <i>(10)</i>	2.1			V	
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (10)	2.0			V	
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V} (10)$	1.7			V	

Table 29. APEX 20KE Device DC Operating Conditions Notes (7), (8), (9)								
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IH}	High-level LVTTL, CMOS, or 3.3-V PCI input voltage		1.7, 0.5 × V _{CCIO} (10)		4.1	V		
V _{IL}	Low-level LVTTL, CMOS, or 3.3-V PCI input voltage		-0.5		0.8, 0.3 × V _{CCIO} (10)	V		
V _{OH}	3.3-V high-level LVTTL output voltage	I _{OH} = -12 mA DC, V _{CCIO} = 3.00 V (11)	2.4			V		
	3.3-V high-level LVCMOS output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 3.00 V (11)	V _{CCIO} – 0.2			V		
	3.3-V high-level PCI output voltage	I _{OH} = -0.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)	$0.9 imes V_{CCIO}$			V		
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (11)	2.1			V		
		I _{OH} = -1 mA DC, V _{CCIO} = 2.30 V (11)	2.0			V		
		I _{OH} = -2 mA DC, V _{CCIO} = 2.30 V (11)	1.7			V		
V _{OL}	3.3-V low-level LVTTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V <i>(12)</i>			0.4	V		
	3.3-V low-level LVCMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (<i>12</i>)			0.2	V		
	3.3-V low-level PCI output voltage	$I_{OL} = 1.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (12)			0.1 × V _{CCIO}	V		
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (<i>12</i>)			0.2	V		
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.4	V		
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V <i>(12)</i>			0.7	V		
I _I	Input pin leakage current	V ₁ = 4.1 to -0.5 V (13)	-10		10	μΑ		
I _{OZ}	Tri-stated I/O pin leakage current	V _O = 4.1 to -0.5 V (13)	-10		10	μA		
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -1 speed grade		10		mA		
		V ₁ = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA		
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (14)	20		50	kΩ		
	before and during configuration	V _{CCIO} = 2.375 V (14)	30		80	kΩ		
		V _{CCIO} = 1.71 V (14)	60		150	kΩ		

P

For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).*

Table 30. APEX 20KE Device Capacitance Note (15)							
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF		
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF		

Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin	Max. Duty Cycle
4.0V	100% (DC)
4.1	90%

- 4.2 50%
- 4.3 30%
- 4.4 17%
- 4.5 10%
- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (7) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between $\rm V_{CCIO}$ and $\rm V_{CCINT}$ for 3.3-V PCI compliance on APEX 20K devices.

Figure 39. ESB Synchronous Timing Waveforms

ESB Synchronous Write (ESB Output Registers Used)

Figure 40 shows the timing model for bidirectional I/O pin timing.

Table 50. EP20k	Table 50. EP20K30E f _{MAX} ESB Timing Microparameters									
Symbol		-1		-2	-	-3				
	Min	Max	Min	Max	Min	Max				
t _{ESBARC}		2.03		2.86		4.24	ns			
t _{ESBSRC}		2.58		3.49		5.02	ns			
t _{ESBAWC}		3.88		5.45		8.08	ns			
t _{ESBSWC}		4.08		5.35		7.48	ns			
t _{ESBWASU}	1.77		2.49		3.68		ns			
t _{ESBWAH}	0.00		0.00		0.00		ns			
t _{ESBWDSU}	1.95		2.74		4.05		ns			
t _{ESBWDH}	0.00		0.00		0.00		ns			
t _{ESBRASU}	1.96		2.75		4.07		ns			
t _{ESBRAH}	0.00		0.00		0.00		ns			
t _{ESBWESU}	1.80		2.73		4.28		ns			
t _{ESBWEH}	0.00		0.00		0.00		ns			
t _{ESBDATASU}	0.07		0.48		1.17		ns			
t _{ESBDATAH}	0.13		0.13		0.13		ns			
t _{ESBWADDRSU}	0.30		0.80		1.64		ns			
t _{ESBRADDRSU}	0.37		0.90		1.78		ns			
t _{ESBDATACO1}		1.11		1.32		1.67	ns			
t _{ESBDATACO2}		2.65		3.73		5.53	ns			
t _{ESBDD}		3.88		5.45		8.08	ns			
t _{PD}		1.91		2.69		3.98	ns			
t _{PTERMSU}	1.04		1.71		2.82		ns			
t _{PTERMCO}		1.13		1.34		1.69	ns			

Table 51. EP20K30E f_{MAX} Routing Delays

Symbol	-1		-	-2	-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.27		0.31	ns
t _{F5-20}		1.03		1.14		1.30	ns
t _{F20+}		1.42		1.54		1.77	ns

Table 57. EP20K60E f _{MAX} Routing Delays											
Symbol		·1	-2		-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.24		0.26		0.30	ns				
t _{F5-20}		1.45		1.58		1.79	ns				
t _{F20+}		1.96		2.14		2.45	ns				

Table 58. EP.	Table 58. EP20K60E Minimum Pulse Width Timing Parameters											
Symbol	-	-1		-2		}	Unit					
	Min	Max	Min	Max	Min	Max						
t _{CH}	2.00		2.50		2.75		ns					
t _{CL}	2.00		2.50		2.75		ns					
t _{CLRP}	0.20		0.28		0.41		ns					
t _{PREP}	0.20		0.28		0.41		ns					
t _{ESBCH}	2.00		2.50		2.75		ns					
t _{ESBCL}	2.00		2.50		2.75		ns					
t _{ESBWP}	1.29		1.80		2.66		ns					
t _{ESBRP}	1.04		1.45		2.14		ns					

Table 59. EP20K60E External Timing Parameters											
Symbol	-1			-2		-3					
	Min	Max	Min	Max	Min	Max					
t _{INSU}	2.03		2.12		2.23		ns				
t _{INH}	0.00		0.00		0.00		ns				
t _{outco}	2.00	4.84	2.00	5.31	2.00	5.81	ns				
tinsupll	1.12		1.15		-		ns				
t _{INHPLL}	0.00		0.00		-		ns				
t _{outcopll}	0.50	3.37	0.50	3.69	-	-	ns				

Table 62. EP20k	(100E f _{MAX} ESE	B Timing Micr	oparameters	1			
Symbol	-	1		-2	-;	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.61		1.84		1.97	ns
t _{ESBSRC}		2.57		2.97		3.20	ns
t _{ESBAWC}		0.52		4.09		4.39	ns
t _{ESBSWC}		3.17		3.78		4.09	ns
t _{ESBWASU}	0.56		6.41		0.63		ns
t _{ESBWAH}	0.48		0.54		0.55		ns
t _{ESBWDSU}	0.71		0.80		0.81		ns
t _{ESBWDH}	.048		0.54		0.55		ns
t _{ESBRASU}	1.57		1.75		1.87		ns
t _{ESBRAH}	0.00		0.00		0.20		ns
t _{ESBWESU}	1.54		1.72		1.80		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.16		-0.20		-0.20		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.12		0.08		0.13		ns
t _{ESBRADDRSU}	0.17		0.15		0.19		ns
t _{ESBDATACO1}		1.20		1.39		1.52	ns
t _{ESBDATACO2}		2.54		2.99		3.22	ns
t _{ESBDD}		3.06		3.56		3.85	ns
t _{PD}		1.73		2.02		2.20	ns
t _{PTERMSU}	1.11		1.26		1.38		ns
t _{PTERMCO}		1.19		1.40		1.08	ns

Table 63. EP20K100E f _{MAX} Routing Delays											
Symbol		-1		-2		3	Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.24		0.27		0.29	ns				
t _{F5-20}		1.04		1.26		1.52	ns				
t _{F20+}		1.12		1.36		1.86	ns				

Table 72. EP20K16	Table 72. EP20K160E External Bidirectional Timing Parameters											
Symbol	-1		-:	2	-	Unit						
	Min	Max	Min	Max	Min	Max						
t _{insubidir}	2.86		3.24		3.54		ns					
t _{inhbidir}	0.00		0.00		0.00		ns					
t _{outcobidir}	2.00	5.07	2.00	5.59	2.00	6.13	ns					
t _{XZBIDIR}		7.43		8.23		8.58	ns					
t _{ZXBIDIR}		7.43		8.23		8.58	ns					
t _{insubidirpll}	4.93		5.48		-		ns					
t _{inhbidirpll}	0.00		0.00		-		ns					
toutcobidirpll	0.50	3.00	0.50	3.35	-	-	ns					
t _{XZBIDIRPLL}		5.36		5.99		-	ns					
t _{ZXBIDIRPLL}		5.36		5.99		-	ns					

Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 73. EP2	Table 73. EP20K200E f _{MAX} LE Timing Microparameters											
Symbol		1		-2	-	Unit						
	Min	Max	Min	Max	Min	Max						
t _{SU}	0.23		0.24		0.26		ns					
t _H	0.23		0.24		0.26		ns					
t _{CO}		0.26		0.31		0.36	ns					
t _{LUT}		0.70		0.90		1.14	ns					

Altera Corporation

Table 76. EP	Table 76. EP20K200E Minimum Pulse Width Timing Parameters											
Symbol		-1		-2		-3						
	Min	Max	Min	Max	Min	Max						
t _{CH}	1.36		2.44		2.65		ns					
t _{CL}	1.36		2.44		2.65		ns					
t _{CLRP}	0.18		0.19		0.21		ns					
t _{PREP}	0.18		0.19		0.21		ns					
t _{ESBCH}	1.36		2.44		2.65		ns					
t _{ESBCL}	1.36		2.44		2.65		ns					
t _{ESBWP}	1.18		1.48		1.76		ns					
t _{ESBRP}	0.95		1.17		1.41		ns					

Table 77. EP2	Table 77. EP20K200E External Timing Parameters											
Symbol	-	-1		-2		-3						
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.24		2.35		2.47		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	5.12	2.00	5.62	2.00	6.11	ns					
t _{INSUPLL}	2.13		2.07		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	3.01	0.50	3.36	-	-	ns					

APEX 20K Programmable Logic Device Family Data Sheet

Table 87. EP20K400E f _{MAX} Routing Delays											
Symbol	-1 Spe	ed Grade	-2 Speed Grade -3 Speed Grade		d Grade	Unit					
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.25		0.25		0.26	ns				
t _{F5-20}		1.01		1.12		1.25	ns				
t _{F20+}		3.71		3.92		4.17	ns				

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.36		2.22		2.35		ns
t _{CL}	1.36		2.26		2.35		ns
t _{CLRP}	0.18		0.18		0.19		ns
t _{PREP}	0.18		0.18		0.19		ns
t _{ESBCH}	1.36		2.26		2.35		ns
t _{ESBCL}	1.36		2.26		2.35		ns
t _{ESBWP}	1.17		1.38		1.56		ns
t _{ESBRP}	0.94		1.09		1.25		ns

Table 89. EP20K400E External Timing Parameters									
Symbol	ol -1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSU}	2.51		2.64		2.77		ns		
t _{INH}	0.00		0.00		0.00		ns		
t _{outco}	2.00	5.25	2.00	5.79	2.00	6.32	ns		
tINSUPLL	3.221		3.38		-		ns		
t _{INHPLL}	0.00		0.00		-		ns		
t _{outcopll}	0.50	2.25	0.50	2.45	-	-	ns		

Г

Table 98. EP20K1000E f _{MAX} ESB Timing Microparameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	1	
t _{ESBARC}		1.78		2.02		1.95	ns	
t _{ESBSRC}		2.52		2.91		3.14	ns	
t _{ESBAWC}		3.52		4.11		4.40	ns	
t _{ESBSWC}		3.23		3.84		4.16	ns	
t _{ESBWASU}	0.62		0.67		0.61		ns	
t _{ESBWAH}	0.41		0.55		0.55		ns	
t _{ESBWDSU}	0.77		0.79		0.81		ns	
t _{ESBWDH}	0.41		0.55		0.55		ns	
t _{ESBRASU}	1.74		1.92		1.85		ns	
t _{ESBRAH}	0.00		0.01		0.23		ns	
t _{ESBWESU}	2.07		2.28		2.41		ns	
t _{ESBWEH}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	0.25		0.27		0.29		ns	
t _{ESBDATAH}	0.13		0.13		0.13		ns	
t _{ESBWADDRSU}	0.11		0.04		0.11		ns	
t _{ESBRADDRSU}	0.14		0.11		0.16		ns	
t _{ESBDATACO1}		1.29		1.50		1.63	ns	
t _{ESBDATACO2}		2.55		2.99		3.22	ns	
t _{ESBDD}		3.12		3.57		3.85	ns	
t _{PD}		1.84		2.13		2.32	ns	
t _{PTERMSU}	1.08		1.19		1.32		ns	
t _{PTERMCO}		1.31		1.53		1.66	ns	

Г

٦

Table 104. EP20K1500E f _{MAX} ESB Timing Microparameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max	1	
t _{ESBARC}		1.78		2.02		1.95	ns	
t _{ESBSRC}		2.52		2.91		3.14	ns	
t _{ESBAWC}		3.52		4.11		4.40	ns	
t _{ESBSWC}		3.23		3.84		4.16	ns	
t _{ESBWASU}	0.62		0.67		0.61		ns	
t _{ESBWAH}	0.41		0.55		0.55		ns	
t _{ESBWDSU}	0.77		0.79		0.81		ns	
t _{ESBWDH}	0.41		0.55		0.55		ns	
t _{ESBRASU}	1.74		1.92		1.85		ns	
t _{ESBRAH}	0.00		0.01		0.23		ns	
t _{ESBWESU}	2.07		2.28		2.41		ns	
t _{ESBWEH}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	0.25		0.27		0.29		ns	
t _{ESBDATAH}	0.13		0.13		0.13		ns	
t _{ESBWADDRSU}	0.11		0.04		0.11		ns	
t _{ESBRADDRSU}	0.14		0.11		0.16		ns	
t _{ESBDATACO1}		1.29		1.50		1.63	ns	
t _{ESBDATACO2}		2.55		2.99		3.22	ns	
t _{ESBDD}		3.12		3.57		3.85	ns	
t _{PD}		1.84		2.13		2.32	ns	
t _{PTERMSU}	1.08		1.19		1.32		ns	
t _{PTERMCO}		1.31		1.53		1.66	ns	

Table 105. EP20K1500E f _{MAX} Routing Delays									
Symbol	-1 Spe	ed Grade	-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{F1-4}		0.28		0.28		0.28	ns		
t _{F5-20}		1.36		1.50		1.62	ns		
t _{F20+}		4.43		4.48		5.07	ns		