Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 832 | | Number of Logic Elements/Cells | 8320 | | Total RAM Bits | 106496 | | Number of I/O | 168 | | Number of Gates | 526000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k200eqi240-2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### Cascade Chain With the cascade chain, the APEX 20K architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. Figure 7. APEX 20K Cascade Chain #### Normal Mode The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II software Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers. #### Arithmetic Mode The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used. #### Counter Mode The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs. The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. ## Clear & Preset Logic Control Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NoT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NoT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted. In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset. ## FastTrack Interconnect In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9. Figure 9. APEX 20K Interconnect Structure A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure. A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows. Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures. Figure 10. FastTrack Connection to Local Interconnect Figure 23. APEX 20KE CAM Block Diagram CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management. The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance. When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs. CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches. The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words. The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations. CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required. Figure 28 shows how a column IOE connects to the interconnect. Figure 28. Column IOE Connection to the Interconnect # **Dedicated Fast I/O Pins** APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed. # Advanced I/O Standard Support APEX 20KE IOEs support the following I/O standards: LVTTL, LVCMOS, 1.8-V I/O, 2.5-V I/O, 3.3-V PCI, PCI-X, 3.3-V AGP, LVDS, LVPECL, GTL+, CTT, HSTL Class I, SSTL-3 Class I and II, and SSTL-2 Class I and II. For more information on I/O standards supported by APEX 20KE devices, see *Application Note 117 (Using Selectable I/O Standards in Altera Devices)*. The APEX 20KE device contains eight I/O banks. In QFP packages, the banks are linked to form four I/O banks. The I/O banks directly support all standards except LVDS and LVPECL. All I/O banks can support LVDS and LVPECL with the addition of external resistors. In addition, one block within a bank contains circuitry to support high-speed True-LVDS and LVPECL inputs, and another block within a particular bank supports high-speed True-LVDS and LVPECL outputs. The LVDS blocks support all of the I/O standards. Each I/O bank has its own VCCIO pins. A single device can support 1.8-V, 2.5-V, and 3.3-V interfaces; each bank can support a different standard independently. Each bank can also use a separate V_{REF} level so that each bank can support any of the terminated standards (such as SSTL-3) independently. Within a bank, any one of the terminated standards can be supported. EP20K300E and larger APEX 20KE devices support the LVDS interface for data pins (smaller devices support LVDS clock pins, but not data pins). All EP20K300E and larger devices support the LVDS interface for data pins up to 155 Mbit per channel; EP20K400E devices and larger with an X-suffix on the ordering code add a serializer/deserializer circuit and PLL for higher-speed support. Each bank can support multiple standards with the same VCCIO for output pins. Each bank can support one voltage-referenced I/O standard, but it can support multiple I/O standards with the same VCCIO voltage level. For example, when VCCIO is 3.3 V, a bank can support LVTTL, LVCMOS, 3.3-V PCI, and SSTL-3 for inputs and outputs. When the LVDS banks are not used as LVDS I/O banks, they support all of the other I/O standards. Figure 29 shows the arrangement of the APEX 20KE I/O banks. Figure 29. APEX 20KE I/O Banks #### Notes to Figure 29: - For more information on placing I/O pins in LVDS blocks, refer to the Guidelines for Using LVDS Blocks section in Application Note 120 (Using LVDS in APEX 20KE Devices). - (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V_{CCIO} set to 3.3 V, 2.5 V, or 1.8 V. # **Power Sequencing & Hot Socketing** Because APEX 20K and APEX 20KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the $V_{\rm CCIO}$ and $V_{\rm CCINT}$ power supplies may be powered in any order. For more information, please refer to the "Power Sequencing Considerations" section in the *Configuring APEX 20KE & APEX 20KC Devices* chapter of the *Configuration Devices Handbook*. Signals can be driven into APEX 20K devices before and during power-up without damaging the device. In addition, APEX 20K devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20K and APEX 20KE devices operate as specified by the user. | Device | | IDCODE (32 Bits) (1) | | | | | | | | | | |------------|---------------------|-----------------------|------------------------------------|-----------|--|--|--|--|--|--|--| | | Version
(4 Bits) | Part Number (16 Bits) | Manufacturer
Identity (11 Bits) | 1 (1 Bit) | | | | | | | | | EP20K30E | 0000 | 1000 0000 0011 0000 | 000 0110 1110 | 1 | | | | | | | | | EP20K60E | 0000 | 1000 0000 0110 0000 | 000 0110 1110 | 1 | | | | | | | | | EP20K100 | 0000 | 0000 0100 0001 0110 | 000 0110 1110 | 1 | | | | | | | | | EP20K100E | 0000 | 1000 0001 0000 0000 | 000 0110 1110 | 1 | | | | | | | | | EP20K160E | 0000 | 1000 0001 0110 0000 | 000 0110 1110 | 1 | | | | | | | | | EP20K200 | 0000 | 0000 1000 0011 0010 | 000 0110 1110 | 1 | | | | | | | | | EP20K200E | 0000 | 1000 0010 0000 0000 | 000 0110 1110 | 1 | | | | | | | | | EP20K300E | 0000 | 1000 0011 0000 0000 | 000 0110 1110 | 1 | | | | | | | | | EP20K400 | 0000 | 0001 0110 0110 0100 | 000 0110 1110 | 1 | | | | | | | | | EP20K400E | 0000 | 1000 0100 0000 0000 | 000 0110 1110 | 1 | | | | | | | | | EP20K600E | 0000 | 1000 0110 0000 0000 | 000 0110 1110 | 1 | | | | | | | | | EP20K1000E | 0000 | 1001 0000 0000 0000 | 000 0110 1110 | 1 | | | | | | | | ## Notes to Table 21: - (1) The most significant bit (MSB) is on the left. - (2) The IDCODE's least significant bit (LSB) is always 1. Figure 31 shows the timing requirements for the JTAG signals. ## Figure 39. ESB Synchronous Timing Waveforms ## **ESB Synchronous Read** ## ESB Synchronous Write (ESB Output Registers Used) Figure 40 shows the timing model for bidirectional I/O pin timing. | Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2) | | | | | | | |---|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | t _{ESBDATACO2} | ESB clock-to-output delay without output registers | | | | | | | t _{ESBDD} | ESB data-in to data-out delay for RAM mode | | | | | | | t _{PD} | ESB macrocell input to non-registered output | | | | | | | t _{PTERMSU} | ESB macrocell register setup time before clock | | | | | | | t _{PTERMCO} | ESB macrocell register clock-to-output delay | | | | | | | t _{F1-4} | Fanout delay using local interconnect | | | | | | | t _{F5-20} | Fanout delay using MegaLab Interconnect | | | | | | | t _{F20+} | Fanout delay using FastTrack Interconnect | | | | | | | t _{CH} | Minimum clock high time from clock pin | | | | | | | t _{CL} | Minimum clock low time from clock pin | | | | | | | t _{CLRP} | LE clear pulse width | | | | | | | t _{PREP} | LE preset pulse width | | | | | | | t _{ESBCH} | Clock high time | | | | | | | t _{ESBCL} | Clock low time | | | | | | | t _{ESBWP} | Write pulse width | | | | | | | t _{ESBRP} | Read pulse width | | | | | | Tables 32 and 33 describe APEX 20K external timing parameters. | Table 32. APEX 20K External Timing Parameters Note (1) | | | | | | | |--|---|--|--|--|--|--| | Symbol | Clock Parameter | | | | | | | t _{INSU} | Setup time with global clock at IOE register | | | | | | | t _{INH} | Hold time with global clock at IOE register | | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE register | | | | | | | Table 33. APEX 20K External Bidirectional Timing Parameters Note (1) | | | | | | | |--|--|------------|--|--|--|--| | Symbol | Conditions | | | | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 10 pF | | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | C1 = 10 pF | | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | C1 = 10 pF | | | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | d Grade | Units | |-------------------------|----------------|-----|----------------|-----|---------|---------|-------| | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.5 | | 0.6 | | 0.8 | | ns | | t _H | 0.7 | | 0.8 | | 1.0 | | ns | | t _{CO} | | 0.3 | | 0.4 | | 0.5 | ns | | t _{LUT} | | 0.8 | | 1.0 | | 1.3 | ns | | t _{ESBRC} | | 1.7 | | 2.1 | | 2.4 | ns | | t _{ESBWC} | | 5.7 | | 6.9 | | 8.1 | ns | | t _{ESBWESU} | 3.3 | | 3.9 | | 4.6 | | ns | | t _{ESBDATASU} | 2.2 | | 2.7 | | 3.1 | | ns | | t _{ESBDATAH} | 0.6 | | 0.8 | | 0.9 | | ns | | t _{ESBADDRSU} | 2.4 | | 2.9 | | 3.3 | | ns | | t _{ESBDATACO1} | | 1.3 | | 1.6 | | 1.8 | ns | | t _{ESBDATACO2} | | 2.6 | | 3.1 | | 3.6 | ns | | t _{ESBDD} | | 2.5 | | 3.3 | | 3.6 | ns | | t _{PD} | | 2.5 | | 3.0 | | 3.6 | ns | | t _{PTERMSU} | 2.3 | | 2.7 | | 3.2 | | ns | | t _{PTERMCO} | | 1.5 | | 1.8 | | 2.1 | ns | | t _{F1-4} | | 0.5 | | 0.6 | | 0.7 | ns | | t _{F5-20} | | 1.6 | | 1.7 | | 1.8 | ns | | t _{F20+} | | 2.2 | | 2.2 | | 2.3 | ns | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{CLRP} | 0.3 | | 0.4 | | 0.4 | | ns | | t _{PREP} | 0.4 | | 0.5 | | 0.5 | | ns | | t _{ESBCH} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{ESBCL} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{ESBWP} | 1.6 | | 1.9 | | 2.2 | | ns | | t _{ESBRP} | 1.0 | | 1.3 | | 1.4 | | ns | | Table 43. EP20K100 External Timing Parameters | | | | | | | | | | |---|----------------|-----|--------|----------------|-----|----------------|----|--|--| | Symbol | -1 Speed Grade | | -2 Spe | -2 Speed Grade | | -3 Speed Grade | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSU} (1) | 2.3 | | 2.8 | | 3.2 | | ns | | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{OUTCO} (1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | | | t _{INSU} (2) | 1.1 | | 1.2 | | - | | ns | | | | t _{INH} (2) | 0.0 | | 0.0 | | _ | | ns | | | | t _{OUTCO} (2) | 0.5 | 2.7 | 0.5 | 3.1 | _ | 4.8 | ns | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | d Grade | Unit | |----------------------------|----------------|-----|----------------|-----|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 2.3 | | 2.8 | | 3.2 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | toutcobidir
(1) | 2.0 | 4.5 | 2.0 | 4.9 | 2.0 | 6.6 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.0 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir
(2) | 0.5 | 2.7 | 0.5 | 3.1 | - | - | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 45. EP20K200 External Timing Parameters | | | | | | | | | | |---|----------------|-----|--------|----------------|-----|----------------|----|--|--| | Symbol | -1 Speed Grade | | -2 Spe | -2 Speed Grade | | -3 Speed Grade | | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{INSU} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{OUTCO} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | | | t _{INSU} (2) | 1.1 | | 1.2 | | _ | | ns | | | | t _{INH} (2) | 0.0 | | 0.0 | | _ | | ns | | | | t _{OUTCO} (2) | 0.5 | 2.7 | 0.5 | 3.1 | - | - | ns | | | | Symbol | -1 Spee | d Grade | -2 Spee | -2 Speed Grade | | d Grade | Unit | |-----------------------------|---------|---------|---------|----------------|-----|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.9 | | 2.3 | | 2.6 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.6 | 2.0 | 5.6 | 2.0 | 6.8 | ns | | t _{XZBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{ZXBIDIR} (1) | | 5.0 | | 5.9 | | 6.9 | ns | | t _{INSUBIDIR} (2) | 1.1 | | 1.2 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | t _{OUTCOBIDIR} (2) | 0.5 | 2.7 | 0.5 | 3.1 | - | _ | ns | | t _{XZBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | t _{ZXBIDIR} (2) | | 4.3 | | 5.0 | | _ | ns | | Table 47. EP20K400 External Timing Parameters | | | | | | | | | | |---|----------------|-----|---------|----------------|-----|----------------|----|--|--| | Symbol | -1 Speed Grade | | -2 Spec | -2 Speed Grade | | -3 Speed Grade | | | | | | Min | Max | Min | Max | Min | Max | 1 | | | | t _{INSU} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | | | t _{INH} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | | | t _{OUTCO} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | | | t _{INSU} (2) | 0.4 | | 1.0 | | - | | ns | | | | t _{INH} (2) | 0.0 | | 0.0 | | _ | | ns | | | | t _{OUTCO} (2) | 0.5 | 3.1 | 0.5 | 4.1 | _ | _ | ns | | | | Table 48. EP20K400 External Bidirections | I Timina | Parameters 1 4 1 | |--|----------|------------------| |--|----------|------------------| | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spe | ed Grade | Unit | |-----------------------------|---------|---------|---------|----------|--------|----------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} (1) | 1.4 | | 1.8 | | 2.0 | | ns | | t _{INHBIDIR} (1) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{OUTCOBIDIR} (1) | 2.0 | 4.9 | 2.0 | 6.1 | 2.0 | 7.0 | ns | | t _{XZBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{ZXBIDIR} (1) | | 7.3 | | 8.9 | | 10.3 | ns | | t _{INSUBIDIR} (2) | 0.5 | | 1.0 | | - | | ns | | t _{INHBIDIR} (2) | 0.0 | | 0.0 | | - | | ns | | toutcobidir (2) | 0.5 | 3.1 | 0.5 | 4.1 | - | - | ns | | t _{XZBIDIR} (2) | | 6.2 | | 7.6 | | - | ns | | t _{ZXBIDIR} (2) | | 6.2 | | 7.6 | | _ | ns | ### Notes to Tables 43 through 48: - (1) This parameter is measured without using ClockLock or ClockBoost circuits. - (2) This parameter is measured using ClockLock or ClockBoost circuits. Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices. | Table 49. EP2 | OK30E f _{MAX} L | E Timing Micr | oparameters | | | | | |------------------|--------------------------|---------------|-------------|------|------|------|------| | Symbol | - | 1 | - | 2 | -; | 3 | Unit | | Mi | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.01 | | 0.02 | | 0.02 | | ns | | t _H | 0.11 | | 0.16 | | 0.23 | | ns | | t _{CO} | | 0.32 | | 0.45 | | 0.67 | ns | | t _{LUT} | | 0.85 | | 1.20 | | 1.77 | ns | | Table 76. EP2 | OK200E Minin | num Pulse W | idth Timing Pa | arameters | | | | | |--------------------|--------------|-------------|----------------|-----------|------|-----|----|--| | Symbol | | -1 | | -2 | | -3 | | | | | Min | Max | Min | Max | Min | Max | | | | t _{CH} | 1.36 | | 2.44 | | 2.65 | | ns | | | t _{CL} | 1.36 | | 2.44 | | 2.65 | | ns | | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | | t _{ESBCH} | 1.36 | | 2.44 | | 2.65 | | ns | | | t _{ESBCL} | 1.36 | | 2.44 | | 2.65 | | ns | | | t _{ESBWP} | 1.18 | | 1.48 | | 1.76 | | ns | | | t _{ESBRP} | 0.95 | | 1.17 | | 1.41 | | ns | | | Symbol | -1 | | - | -2 | | -3 | | | |-----------------------|------|------|------|------|------|------|----|--| | | Min | Max | Min | Max | Min | Max | 1 | | | t _{INSU} | 2.24 | | 2.35 | | 2.47 | | ns | | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | | t _{outco} | 2.00 | 5.12 | 2.00 | 5.62 | 2.00 | 6.11 | ns | | | t _{INSUPLL} | 2.13 | | 2.07 | | - | | ns | | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | | t _{OUTCOPLL} | 0.50 | 3.01 | 0.50 | 3.36 | - | - | ns | | | Symbol | -1 Spee | d Grade | -2 Spee | ed Grade | -3 Spee | d Grade | Unit | |-------------------------|---------|---------|---------|----------|---------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.67 | | 1.91 | | 1.99 | ns | | t _{ESBSRC} | | 2.30 | | 2.66 | | 2.93 | ns | | t _{ESBAWC} | | 3.09 | | 3.58 | | 3.99 | ns | | t _{ESBSWC} | | 3.01 | | 3.65 | | 4.05 | ns | | t _{ESBWASU} | 0.54 | | 0.63 | | 0.65 | | ns | | t _{ESBWAH} | 0.36 | | 0.43 | | 0.42 | | ns | | t _{ESBWDSU} | 0.69 | | 0.77 | | 0.84 | | ns | | t _{ESBWDH} | 0.36 | | 0.43 | | 0.42 | | ns | | t _{ESBRASU} | 1.61 | | 1.77 | | 1.86 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.01 | | ns | | t _{ESBWESU} | 1.35 | | 1.47 | | 1.61 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.18 | | -0.30 | | -0.27 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | -0.02 | | -0.11 | | -0.03 | | ns | | t _{ESBRADDRSU} | 0.06 | | -0.01 | | -0.05 | | ns | | t _{ESBDATACO1} | | 1.16 | | 1.40 | | 1.54 | ns | | t _{ESBDATACO2} | | 2.18 | | 2.55 | | 2.85 | ns | | t _{ESBDD} | | 2.73 | | 3.17 | | 3.58 | ns | | t _{PD} | | 1.57 | | 1.83 | | 2.07 | ns | | t _{PTERMSU} | 0.92 | | 0.99 | | 1.18 | | ns | | t _{PTERMCO} | | 1.18 | | 1.43 | | 1.17 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | Unit | | |----------------------------|----------------|------|----------------|------|---------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 3.22 | | 3.33 | | 3.51 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.75 | 2.00 | 6.33 | 2.00 | 6.90 | ns | | t _{XZBIDIR} | | 6.31 | | 7.09 | | 7.76 | ns | | tzxbidir | | 6.31 | | 7.09 | | 7.76 | ns | | t _{INSUBIDIRPL} L | 3.25 | | 3.26 | | | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | | | ns | | toutcobidirpll | 0.50 | 2.25 | 0.50 | 2.99 | | | ns | | txzbidirpll | | 2.81 | | 3.80 | | | ns | | t _{ZXBIDIRPLL} | | 2.81 | | 3.80 | | | ns | Tables 103 through 108 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K1500E APEX 20KE devices. | Table 103. EP | 20K1500E f _{MA} | _{IX} LE Timing N | <i>Microparamet</i> | ers | | | | |------------------|--------------------------|---------------------------|---------------------|-----------------------------|------|----------------|----| | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade -3 Speed Gra | | -3 Speed Grade | | | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.25 | | 0.25 | | 0.25 | | ns | | t _H | 0.25 | | 0.25 | | 0.25 | | ns | | t _{CO} | | 0.28 | | 0.32 | | 0.33 | ns | | t _{LUT} | | 0.80 | | 0.95 | | 1.13 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | Unit | | |---------------------------|----------------|------|----------------|------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 3.47 | | 3.68 | | 3.99 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 6.18 | 2.00 | 6.81 | 2.00 | 7.36 | ns | | t _{XZBIDIR} | | 6.91 | | 7.62 | | 8.38 | ns | | t _{ZXBIDIR} | | 6.91 | | 7.62 | | 8.38 | ns | | t _{INSUBIDIRPLL} | 3.05 | | 3.26 | | | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | | | ns | | toutcobidirpll | 0.50 | 2.67 | 0.50 | 2.99 | | | ns | | t _{XZBIDIRPLL} | | 3.41 | | 3.80 | | | ns | | tzxbidirpll | | 3.41 | | 3.80 | | | ns | Tables 109 and 110 show selectable I/O standard input and output delays for APEX 20KE devices. If you select an I/O standard input or output delay other than LVCMOS, add or subtract the selected speed grade to or from the LVCMOS value. | Table 109. Selectab | le I/O Standa | ard Input Dela | ays | | | | | | |---------------------|----------------|----------------|----------------|-------|----------------|-------|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | Min | | | LVCMOS | | 0.00 | | 0.00 | | 0.00 | ns | | | LVTTL | | 0.00 | | 0.00 | | 0.00 | ns | | | 2.5 V | | 0.00 | | 0.04 | | 0.05 | ns | | | 1.8 V | | -0.11 | | 0.03 | | 0.04 | ns | | | PCI | | 0.01 | | 0.09 | | 0.10 | ns | | | GTL+ | | -0.24 | | -0.23 | | -0.19 | ns | | | SSTL-3 Class I | | -0.32 | | -0.21 | | -0.47 | ns | | | SSTL-3 Class II | | -0.08 | | 0.03 | | -0.23 | ns | | | SSTL-2 Class I | | -0.17 | | -0.06 | | -0.32 | ns | | | SSTL-2 Class II | | -0.16 | | -0.05 | | -0.31 | ns | | | LVDS | | -0.12 | | -0.12 | | -0.12 | ns | | | CTT | | 0.00 | | 0.00 | | 0.00 | ns | | | AGP | | 0.00 | | 0.00 | | 0.00 | ns | |