

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	832
Number of Logic Elements/Cells	8320
Total RAM Bits	106496
Number of I/O	-
Number of Gates	526000
Voltage - Supply	2.375V ~ 2.625V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	672-BBGA
Supplier Device Package	672-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k200fc672-1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 5. APEX 20K F	ineLine BGA Pack	age Options & I/C	O Count Note	s (1), (2)	
Device	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin
EP20K30E	93	128			
EP20K60E	93	196			
EP20K100		252			
EP20K100E	93	246			
EP20K160E			316		
EP20K200			382		
EP20K200E			376	376	
EP20K300E				408	
EP20K400				502 <i>(3)</i>	
EP20K400E				488 (3)	
EP20K600E				508 (3)	588
EP20K1000E				508 (3)	708
EP20K1500E					808

Notes to Tables 4 and 5:

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

Table 6. APEX 20K QFP, BGA & PGA Package Sizes						
Feature	144-Pin TQFP	208-Pin QFP	240-Pin QFP	356-Pin BGA	652-Pin BGA	655-Pin PGA
Pitch (mm)	0.50	0.50	0.50	1.27	1.27	_
Area (mm ²)	484	924	1,218	1,225	2,025	3,906
$\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.4 × 30.4	34.9 × 34.9	35 × 35	45 × 45	62.5 × 62.5

Table 7. APEX 20K FineLine BGA Package Sizes						
Feature	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin	
Pitch (mm)	1.00	1.00	1.00	1.00	1.00	
Area (mm ²)	169	361	529	729	1,089	
$Length \times Width \ (mm \times mm)$	13 × 13	19×19	23 × 23	27 × 27	33 × 33	

Source	Destination								
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect
Row I/O Pin					✓	✓	✓	✓	
Column I/O Pin								✓	✓ (1)
LE					✓	✓	✓	✓	
ESB					✓	✓	✓	✓	
Local Interconnect	✓	✓	✓	✓					
MegaLAB Interconnect					~				
Row FastTrack Interconnect						✓		✓	
Column						✓	✓		
FastTrack Interconnect									
FastRow Interconnect					✓ (1)				

Note to Table 9:

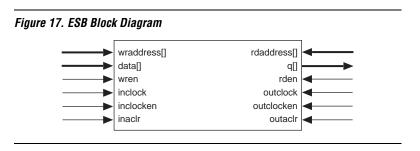
(1) This connection is supported in APEX 20KE devices only.

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

From Previous Macrocell Product-Macrocell Term Product-Select Term Logic Matrix Parallel Expander Switch Product-Macrocell Term Product-Select Term Logic Matrix Parallel Expander Switch 32 Signals from To Next


Figure 16. APEX 20K Parallel Expanders

Embedded System Block

Local Interconnect

The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Macrocell

ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays.

To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18.

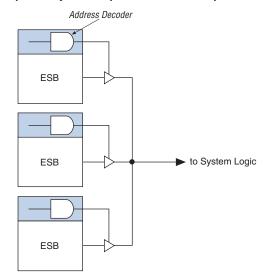


Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

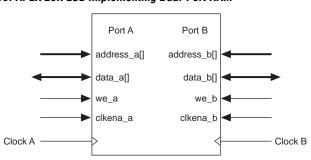


Figure 19. APEX 20K ESB Implementing Dual-Port RAM

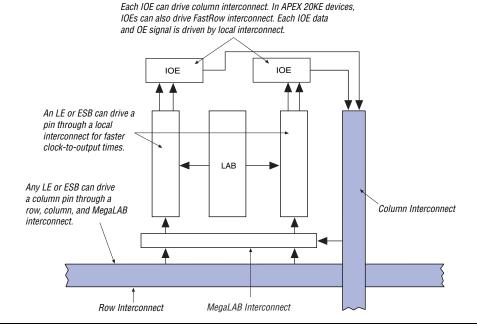
Implementing Logic in ROM

In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate.

Programmable Speed/Power Control

APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo BitTM option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current.

Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power.


I/O Structure

The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently.

The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay.

Figure 28 shows how a column IOE connects to the interconnect.

Figure 28. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed.

Clock Phase & Delay Adjustment

The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

LVDS Support

Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing.

Lock Signals

The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications.

For more information on ClockLock and ClockBoost circuitry, see *Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices*.

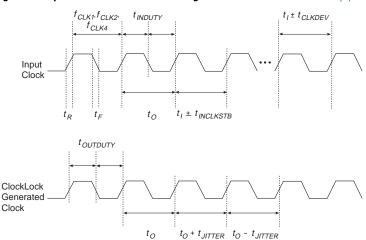


Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

Note to Figure 30:

(1) The tl parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

Symbol	Parameter	Min	Max	Unit
f _{OUT}	Output frequency	25	180	MHz
f _{CLK1} (1)	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	180 (1)	MHz
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	90	MHz
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	48	MHz
^t OUTDUTY	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2)		25,000 (3)	PPM
t _R	Input rise time		5	ns
t _F	Input fall time		5	ns
t _{LOCK}	Time required for ClockLock/ClockBoost to acquire lock (4)		10	μs

Symbol	Parameter	I/O Standard	-1X Spe	ed Grade	-2X Spee	d Grade	Units
			Min	Max	Min	Max	
f _{VCO} (4)	Voltage controlled oscillator operating range		200	500	200	500	MHz
f _{CLOCK0}	Clock0 PLL output frequency for internal use		1.5	335	1.5	200	MHz
f _{CLOCK1}	Clock1 PLL output frequency for internal use		20	335	20	200	MHz
f _{CLOCK0_EXT}	Output clock frequency for	3.3-V LVTTL	1.5	245	1.5	226	MHz
	external clock0 output	2.5-V LVTTL	1.5	234	1.5	221	MHz
		1.8-V LVTTL	1.5	223	1.5	216	MHz
		GTL+	1.5	205	1.5	193	MHz
		SSTL-2 Class	1.5	158	1.5	157	MHz
		SSTL-2 Class	1.5	142	1.5	142	MHz
		SSTL-3 Class	1.5	166	1.5	162	MHz
		SSTL-3 Class	1.5	149	1.5	146	MHz
		LVDS	1.5	420	1.5	350	MHz
f _{CLOCK1_EXT}	Output clock frequency for external clock1 output	3.3-V LVTTL	20	245	20	226	MHz
		2.5-V LVTTL	20	234	20	221	MHz
		1.8-V LVTTL	20	223	20	216	MHz
		GTL+	20	205	20	193	MHz
		SSTL-2 Class	20	158	20	157	MHz
		SSTL-2 Class	20	142	20	142	MHz
		SSTL-3 Class	20	166	20	162	MHz
		SSTL-3 Class	20	149	20	146	MHz
		LVDS	20	420	20	350	MHz

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (11)			0.2	V
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)			0.1 × V _{CCIO}	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (11)			0.2	٧
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (11)			0.4	٧
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (11)			0.7	٧
I _I	Input pin leakage current	$V_1 = 5.75 \text{ to } -0.5 \text{ V}$	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	$V_O = 5.75 \text{ to } -0.5 \text{ V}$	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -1 speed grade (12)		10		mA
		V _I = ground, no load, no toggling inputs, -2, -3 speed grades (12)		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (13)	20		50	W
	before and during configuration	V _{CCIO} = 2.375 V (13)	30		80	W

For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).*

Table 30. APEX 20KE Device Capacitance Note (15)						
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF	
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF	

Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10%

- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance on APEX 20K devices.

Note to Tables 32 and 33:

(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model.

Table 34. APEX 20KE LE Timing Microparameters				
Symbol Parameter				
t _{SU}	LE register setup time before clock			
t _H	LE register hold time after clock			
t _{CO}	LE register clock-to-output delay			
t _{LUT}	LUT delay for data-in to data-out			

Table 35. APE.	X 20KE ESB Timing Microparameters
Symbol	Parameter
t _{ESBARC}	ESB Asynchronous read cycle time
t _{ESBSRC}	ESB Synchronous read cycle time
t _{ESBAWC}	ESB Asynchronous write cycle time
t _{ESBSWC}	ESB Synchronous write cycle time
t _{ESBWASU}	ESB write address setup time with respect to WE
t _{ESBWAH}	ESB write address hold time with respect to WE
t _{ESBWDSU}	ESB data setup time with respect to WE
t _{ESBWDH}	ESB data hold time with respect to WE
t _{ESBRASU}	ESB read address setup time with respect to RE
t _{ESBRAH}	ESB read address hold time with respect to RE
t _{ESBWESU}	ESB WE setup time before clock when using input register
t _{ESBWEH}	ESB WE hold time after clock when using input register
t _{ESBDATASU}	ESB data setup time before clock when using input register
t _{ESBDATAH}	ESB data hold time after clock when using input register
t _{ESBWADDRSU}	ESB write address setup time before clock when using input registers
t _{ESBRADDRSU}	ESB read address setup time before clock when using input registers
t _{ESBDATACO1}	ESB clock-to-output delay when using output registers
t _{ESBDATACO2}	ESB clock-to-output delay without output registers
t _{ESBDD}	ESB data-in to data-out delay for RAM mode
t _{PD}	ESB Macrocell input to non-registered output
t _{PTERMSU}	ESB Macrocell register setup time before clock
t _{PTERMCO}	ESB Macrocell register clock-to-output delay

Table 36. APEX 20KE Routing Timing Microparameters Note (1)				
Symbol Parameter				
t _{F1-4}	Fanout delay using Local Interconnect			
t _{F5-20}	Fanout delay estimate using MegaLab Interconnect			
t _{F20+}	Fanout delay estimate using FastTrack Interconnect			

Note to Table 36:

(1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance.

Table 37. APE	X 20KE Functional Timing Microparameters
Symbol	Parameter
TCH	Minimum clock high time from clock pin
TCL	Minimum clock low time from clock pin
TCLRP	LE clear Pulse Width
TPREP	LE preset pulse width
TESBCH	Clock high time for ESB
TESBCL	Clock low time for ESB
TESBWP	Write pulse width
TESBRP	Read pulse width

Tables 38 and 39 describe the APEX 20KE external timing parameters.

Table 38. APEX 20KE External Timing Parameters Note (1)								
Symbol	Clock Parameter	Conditions						
t _{INSU}	Setup time with global clock at IOE input register							
t _{INH}	Hold time with global clock at IOE input register							
t _{OUTCO}	Clock-to-output delay with global clock at IOE output register	C1 = 10 pF						
t _{INSUPLL}	Setup time with PLL clock at IOE input register							
t _{INHPLL}	Hold time with PLL clock at IOE input register							
t _{OUTCOPLL}	Clock-to-output delay with PLL clock at IOE output register	C1 = 10 pF						

Symbol	-	1		-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		2.03		2.86		4.24	ns
t _{ESBSRC}		2.58		3.49		5.02	ns
t _{ESBAWC}		3.88		5.45		8.08	ns
t _{ESBSWC}		4.08		5.35		7.48	ns
t _{ESBWASU}	1.77		2.49		3.68		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.95		2.74		4.05		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.96		2.75		4.07		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.80		2.73		4.28		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.07		0.48		1.17		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.30		0.80		1.64		ns
t _{ESBRADDRSU}	0.37		0.90		1.78		ns
t _{ESBDATACO1}		1.11		1.32		1.67	ns
t _{ESBDATACO2}		2.65		3.73		5.53	ns
t _{ESBDD}		3.88		5.45		8.08	ns
t _{PD}		1.91	_	2.69		3.98	ns
t _{PTERMSU}	1.04		1.71		2.82		ns
t _{PTERMCO}		1.13		1.34		1.69	ns

Table 51. EP2	OK30E f _{MAX} R	outing Delays					
Symbol	-	1	,	-2	-;	-3	
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.27		0.31	ns
t _{F5-20}		1.03		1.14		1.30	ns
t _{F20+}		1.42		1.54		1.77	ns

Table 62. EP20K	I GOL IMAX LOL	, Thinny Miles	1		Ī		1
Symbol	-	1		-2	-:	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.61		1.84		1.97	ns
t _{ESBSRC}		2.57		2.97		3.20	ns
t _{ESBAWC}		0.52		4.09		4.39	ns
t _{ESBSWC}		3.17		3.78		4.09	ns
t _{ESBWASU}	0.56		6.41		0.63		ns
t _{ESBWAH}	0.48		0.54		0.55		ns
t _{ESBWDSU}	0.71		0.80		0.81		ns
t _{ESBWDH}	.048		0.54		0.55		ns
t _{ESBRASU}	1.57		1.75		1.87		ns
t _{ESBRAH}	0.00		0.00		0.20		ns
t _{ESBWESU}	1.54		1.72		1.80		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.16		-0.20		-0.20		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.12		0.08		0.13		ns
t _{ESBRADDRSU}	0.17		0.15		0.19		ns
t _{ESBDATACO1}		1.20		1.39		1.52	ns
t _{ESBDATACO2}		2.54		2.99		3.22	ns
t _{ESBDD}		3.06		3.56		3.85	ns
t _{PD}		1.73		2.02		2.20	ns
t _{PTERMSU}	1.11		1.26		1.38		ns
t _{PTERMCO}		1.19		1.40		1.08	ns

Table 63. EP2	0K100E f _{MAX} 1	Routing Delays	s				
Symbol	-1		-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.24		0.27		0.29	ns
t _{F5-20}		1.04		1.26		1.52	ns
t _{F20+}		1.12		1.36		1.86	ns

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.65		2.02		2.11	ns
t _{ESBSRC}		2.21		2.70		3.11	ns
t _{ESBAWC}		3.04		3.79		4.42	ns
t _{ESBSWC}		2.81		3.56		4.10	ns
t _{ESBWASU}	0.54		0.66		0.73		ns
t _{ESBWAH}	0.36		0.45		0.47		ns
t _{ESBWDSU}	0.68		0.81		0.94		ns
t _{ESBWDH}	0.36		0.45		0.47		ns
t _{ESBRASU}	1.58		1.87		2.06		ns
t _{ESBRAH}	0.00		0.00		0.01		ns
t _{ESBWESU}	1.41		1.71		2.00		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.02		-0.03		0.09		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.14		0.17		0.35		ns
t _{ESBRADDRSU}	0.21		0.27		0.43		ns
t _{ESBDATACO1}		1.04		1.30		1.46	ns
t _{ESBDATACO2}		2.15		2.70		3.16	ns
t _{ESBDD}		2.69		3.35		3.97	ns
t _{PD}		1.55		1.93	_	2.29	ns
t _{PTERMSU}	1.01		1.23		1.52		ns
t _{PTERMCO}		1.06		1.32		1.04	ns

Table 76. EP2	OK200E Minin	num Pulse W	idth Timing Pa	arameters			
Symbol	-	-1		-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.36		2.44		2.65		ns
t _{CL}	1.36		2.44		2.65		ns
t _{CLRP}	0.18		0.19		0.21		ns
t _{PREP}	0.18		0.19		0.21		ns
t _{ESBCH}	1.36		2.44		2.65		ns
t _{ESBCL}	1.36		2.44		2.65		ns
t _{ESBWP}	1.18		1.48		1.76		ns
t _{ESBRP}	0.95		1.17		1.41		ns

Symbol	-1		-	2	-3	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.24		2.35		2.47		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	5.12	2.00	5.62	2.00	6.11	ns
t _{INSUPLL}	2.13		2.07		-		ns
t _{INHPLL}	0.00		0.00		-		ns
t _{OUTCOPLL}	0.50	3.01	0.50	3.36	-	-	ns

Symbol	-1		-	2	-	Unit	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.81		3.19		3.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
toutcobidir	2.00	5.12	2.00	5.62	2.00	6.11	ns
t _{XZBIDIR}		7.51		8.32		8.67	ns
tzxbidir		7.51		8.32		8.67	ns
t _{INSUBIDIRPLL}	3.30		3.64		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
toutcobidirpll	0.50	3.01	0.50	3.36	-	-	ns
t _{XZBIDIRPLL}		5.40		6.05		-	ns
tzxbidirpll		5.40		6.05		-	ns

Tables 79 through 84 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K300E APEX 20KE devices.

Table 79. EP20K300E f _{MAX} LE Timing Microparameters											
Symbol	-1			-2	-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{SU}	0.16		0.17		0.18		ns				
t _H	0.31		0.33		0.38		ns				
t _{CO}		0.28		0.38		0.51	ns				
t _{LUT}		0.79		1.07		1.43	ns				

Symbol	-1 Speed Grade		-2 Spe	ed Grade	-3 Spee	Unit	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.78		2.02		1.95	ns
t _{ESBSRC}		2.52		2.91		3.14	ns
t _{ESBAWC}		3.52		4.11		4.40	ns
t _{ESBSWC}		3.23		3.84		4.16	ns
t _{ESBWASU}	0.62		0.67		0.61		ns
t _{ESBWAH}	0.41		0.55		0.55		ns
t _{ESBWDSU}	0.77		0.79		0.81		ns
t _{ESBWDH}	0.41		0.55		0.55		ns
t _{ESBRASU}	1.74		1.92		1.85		ns
t _{ESBRAH}	0.00		0.01		0.23		ns
t _{ESBWESU}	2.07		2.28		2.41		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.25		0.27		0.29		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.11		0.04		0.11		ns
t _{ESBRADDRSU}	0.14		0.11		0.16		ns
t _{ESBDATACO1}		1.29		1.50		1.63	ns
t _{ESBDATACO2}		2.55		2.99		3.22	ns
t _{ESBDD}		3.12		3.57		3.85	ns
t _{PD}		1.84		2.13		2.32	ns
t _{PTERMSU}	1.08		1.19		1.32		ns

1.53

1.66

ns

1.31

 t_{PTERMCO}