



Welcome to **E-XFL.COM** 

# Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

# **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

| Details                        |                                                             |
|--------------------------------|-------------------------------------------------------------|
| Product Status                 | Obsolete                                                    |
| Number of LABs/CLBs            | 1152                                                        |
| Number of Logic Elements/Cells | 11520                                                       |
| Total RAM Bits                 | 147456                                                      |
| Number of I/O                  | 408                                                         |
| Number of Gates                | 728000                                                      |
| Voltage - Supply               | 1.71V ~ 1.89V                                               |
| Mounting Type                  | Surface Mount                                               |
| Operating Temperature          | 0°C ~ 85°C (TJ)                                             |
| Package / Case                 | 672-BBGA                                                    |
| Supplier Device Package        | 672-FBGA (27x27)                                            |
| Purchase URL                   | https://www.e-xfl.com/product-detail/intel/ep20k300efc672-2 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required.

APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy.

After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations.

The Quartus II software provides NativeLink interfaces to other industry-standard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture.

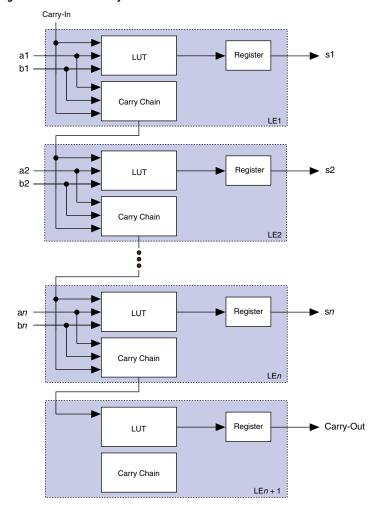



Figure 6. APEX 20K Carry Chain

#### LE Operating Modes

The APEX 20K LE can operate in one of the following three modes:

- Normal mode
- Arithmetic mode
- Counter mode

Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes.

The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

#### Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NoT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NoT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV\_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

#### FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

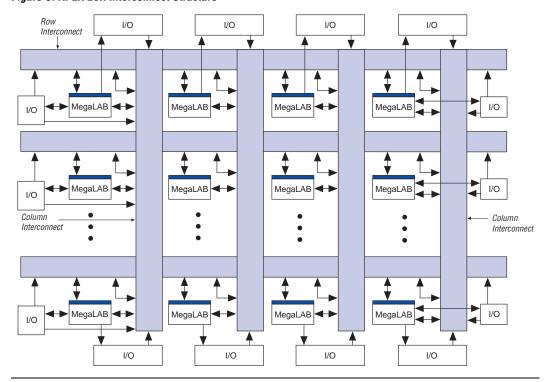



Figure 9. APEX 20K Interconnect Structure

A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure.

A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows.

Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures.

Select Vertical I/O Pins IOE IOE FastRow Interconnect IOE IOE Drive Local Interconnect FastRow Drives Local Interconnect and FastRow Interconnect in Two MegaLAB Structures Interconnect Local Interconnect LEs MegaLAB MegaLAB *LABs* 

Figure 12. APEX 20KE FastRow Interconnect

Table 9 summarizes how various elements of the APEX 20K architecture drive each other.

The programmable register also supports an asynchronous clear function. Within the ESB, two asynchronous clears are generated from global signals and the local interconnect. Each macrocell can either choose between the two asynchronous clear signals or choose to not be cleared. Either of the two clear signals can be inverted within the ESB. Figure 15 shows the ESB control logic when implementing product-terms.

Dedicated Clocks Global Signals Local Interconnect Local Interconnect Local Interconnect Local Interconnect CLR1 CLKENA2 CLK1 CLKENA1 CLR<sub>2</sub>

Figure 15. ESB Product-Term Mode Control Logic

Note to Figure 15:

(1) APEX 20KE devices have four dedicated clocks.

### Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 32 product terms to feed the macrocell OR logic directly, with two product terms provided by the macrocell and 30 parallel expanders provided by the neighboring macrocells in the ESB.

The Quartus II software Compiler can allocate up to 15 sets of up to two parallel expanders per set to the macrocells automatically. Each set of two parallel expanders incurs a small, incremental timing delay. Figure 16 shows the APEX 20K parallel expanders.

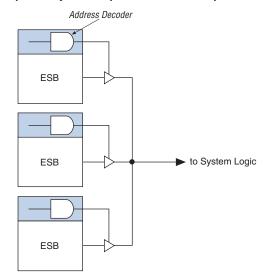



Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

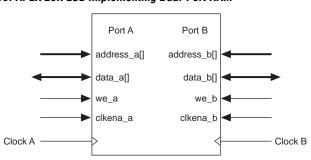



Figure 19. APEX 20K ESB Implementing Dual-Port RAM

#### Read/Write Clock Mode

The read/write clock mode contains two clocks. One clock controls all registers associated with writing: data input, WE, and write address. The other clock controls all registers associated with reading: read enable (RE), read address, and data output. The ESB also supports clock enable and asynchronous clear signals; these signals also control the read and write registers independently. Read/write clock mode is commonly used for applications where reads and writes occur at different system frequencies. Figure 20 shows the ESB in read/write clock mode.

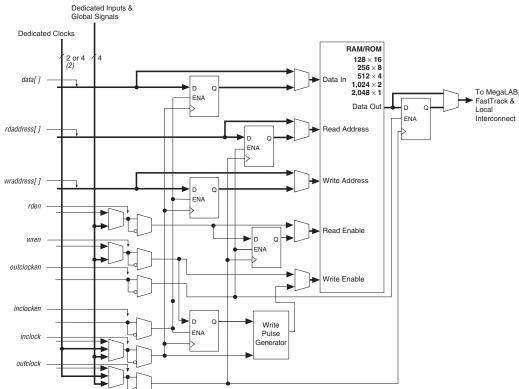



Figure 20. ESB in Read/Write Clock Mode Note (1)

Notes to Figure 20:

(1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.

(2) APEX 20KE devices have four dedicated clocks.



For more information on APEX 20KE devices and CAM, see *Application Note 119 (Implementing High-Speed Search Applications with APEX CAM).* 

## **Driving Signals to the ESB**

ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic.

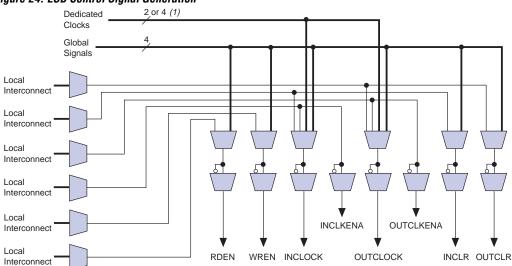



Figure 24. ESB Control Signal Generation

Note to Figure 24:

(1) APEX 20KE devices have four dedicated clocks.

An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device.

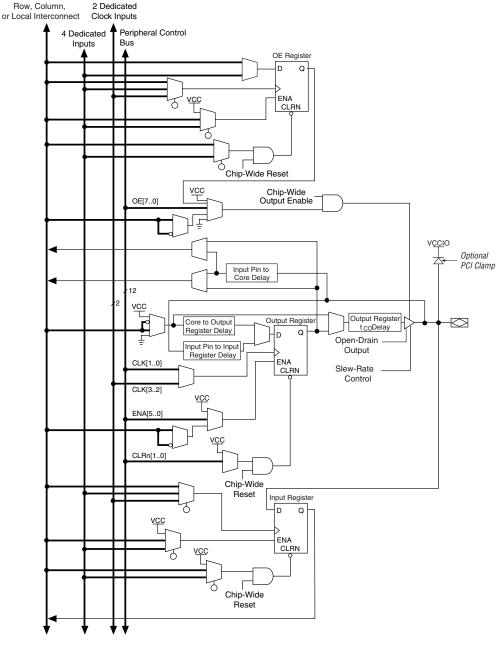



Figure 25. APEX 20K Bidirectional I/O Registers Note (1)

Note to Figure 25:

(1) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin.

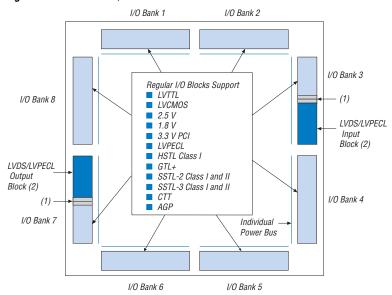



Figure 29. APEX 20KE I/O Banks

#### Notes to Figure 29:

- For more information on placing I/O pins in LVDS blocks, refer to the Guidelines for Using LVDS Blocks section in Application Note 120 (Using LVDS in APEX 20KE Devices).
- (2) If the LVDS input and output blocks are not used for LVDS, they can support all of the I/O standards and can be used as input, output, or bidirectional pins with V<sub>CCIO</sub> set to 3.3 V, 2.5 V, or 1.8 V.

# **Power Sequencing & Hot Socketing**

Because APEX 20K and APEX 20KE devices can be used in a mixed-voltage environment, they have been designed specifically to tolerate any possible power-up sequence. Therefore, the  $V_{\rm CCIO}$  and  $V_{\rm CCINT}$  power supplies may be powered in any order.



For more information, please refer to the "Power Sequencing Considerations" section in the *Configuring APEX 20KE & APEX 20KC Devices* chapter of the *Configuration Devices Handbook*.

Signals can be driven into APEX 20K devices before and during power-up without damaging the device. In addition, APEX 20K devices do not drive out during power-up. Once operating conditions are reached and the device is configured, APEX 20K and APEX 20KE devices operate as specified by the user.

#### Clock Phase & Delay Adjustment

The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period.

#### LVDS Support

Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing.

#### Lock Signals

The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins.

# ClockLock & ClockBoost Timing Parameters

For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications.



For more information on ClockLock and ClockBoost circuitry, see *Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices*.



For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).* 

| Table 30. APEX 20KE Device Capacitance Note (15) |                                          |                                     |     |     |      |  |  |
|--------------------------------------------------|------------------------------------------|-------------------------------------|-----|-----|------|--|--|
| Symbol                                           | Parameter                                | Conditions                          | Min | Max | Unit |  |  |
| C <sub>IN</sub>                                  | Input capacitance                        | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |     | 8   | pF   |  |  |
| C <sub>INCLK</sub>                               | Input capacitance on dedicated clock pin | V <sub>IN</sub> = 0 V, f = 1.0 MHz  |     | 12  | pF   |  |  |
| C <sub>OUT</sub>                                 | Output capacitance                       | V <sub>OUT</sub> = 0 V, f = 1.0 MHz |     | 8   | pF   |  |  |

#### Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V<sub>CC</sub> rise time is 100 ms, and V<sub>CC</sub> must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10%

- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V<sub>CCINT</sub> and V<sub>CCIO</sub> are powered.
- Typical values are for  $T_A = 25^{\circ}$  C,  $V_{CCINT} = 1.8$  V, and  $V_{CCIO} = 1.8$  V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V<sub>IH</sub>, V<sub>IL</sub>, V<sub>OH</sub>, V<sub>OL</sub>, and I<sub>I</sub> parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I<sub>OH</sub> parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I<sub>OL</sub> parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V<sub>CCIO</sub>.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between  $V_{CCIO}$  and  $V_{CCINT}$  for 3.3-V PCI compliance on APEX 20K devices.

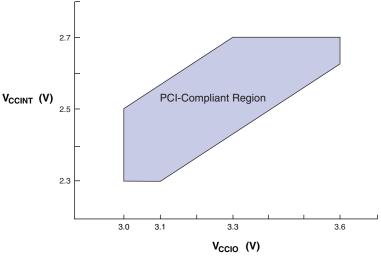



Figure 33. Relationship between  $V_{CCIO}$  &  $V_{CCINT}$  for 3.3-V PCI Compliance

Figure 34 shows the typical output drive characteristics of APEX 20K devices with 3.3-V and 2.5-V  $V_{\rm CCIO}$ . The output driver is compatible with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). 5-V tolerant APEX 20K devices in the -1 speed grade are 5-V PCI compliant over all operating conditions.

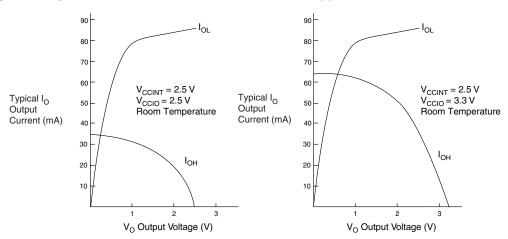



Figure 34. Output Drive Characteristics of APEX 20K Device Note (1)

Note to Figure 34:

(1) These are transient (AC) currents.

Tables 40 through 42 show the  $f_{\mbox{\scriptsize MAX}}$  timing parameters for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

| Symbol                  | -1 Speed Grade |     | -2 Speed Grade |     | -3 Speed Grade |     | Units |
|-------------------------|----------------|-----|----------------|-----|----------------|-----|-------|
|                         | Min            | Max | Min            | Max | Min            | Max | 1     |
| t <sub>SU</sub>         | 0.5            |     | 0.6            |     | 0.8            |     | ns    |
| t <sub>H</sub>          | 0.7            |     | 0.8            |     | 1.0            |     | ns    |
| t <sub>CO</sub>         |                | 0.3 |                | 0.4 |                | 0.5 | ns    |
| t <sub>LUT</sub>        |                | 0.8 |                | 1.0 |                | 1.3 | ns    |
| t <sub>ESBRC</sub>      |                | 1.7 |                | 2.1 |                | 2.4 | ns    |
| t <sub>ESBWC</sub>      |                | 5.7 |                | 6.9 |                | 8.1 | ns    |
| t <sub>ESBWESU</sub>    | 3.3            |     | 3.9            |     | 4.6            |     | ns    |
| t <sub>ESBDATASU</sub>  | 2.2            |     | 2.7            |     | 3.1            |     | ns    |
| t <sub>ESBDATAH</sub>   | 0.6            |     | 0.8            |     | 0.9            |     | ns    |
| t <sub>ESBADDRSU</sub>  | 2.4            |     | 2.9            |     | 3.3            |     | ns    |
| t <sub>ESBDATACO1</sub> |                | 1.3 |                | 1.6 |                | 1.8 | ns    |
| t <sub>ESBDATACO2</sub> |                | 2.6 |                | 3.1 |                | 3.6 | ns    |
| t <sub>ESBDD</sub>      |                | 2.5 |                | 3.3 |                | 3.6 | ns    |
| t <sub>PD</sub>         |                | 2.5 |                | 3.0 |                | 3.6 | ns    |
| t <sub>PTERMSU</sub>    | 2.3            |     | 2.6            |     | 3.2            |     | ns    |
| t <sub>PTERMCO</sub>    |                | 1.5 |                | 1.8 |                | 2.1 | ns    |
| t <sub>F1-4</sub>       |                | 0.5 |                | 0.6 |                | 0.7 | ns    |
| t <sub>F5-20</sub>      |                | 1.6 |                | 1.7 |                | 1.8 | ns    |
| t <sub>F20+</sub>       |                | 2.2 |                | 2.2 |                | 2.3 | ns    |
| t <sub>CH</sub>         | 2.0            |     | 2.5            |     | 3.0            |     | ns    |
| t <sub>CL</sub>         | 2.0            |     | 2.5            |     | 3.0            |     | ns    |
| t <sub>CLRP</sub>       | 0.3            |     | 0.4            |     | 0.4            |     | ns    |
| t <sub>PREP</sub>       | 0.5            |     | 0.5            |     | 0.5            |     | ns    |
| t <sub>ESBCH</sub>      | 2.0            |     | 2.5            |     | 3.0            |     | ns    |
| t <sub>ESBCL</sub>      | 2.0            |     | 2.5            |     | 3.0            |     | ns    |
| t <sub>ESBWP</sub>      | 1.6            |     | 1.9            |     | 2.2            |     | ns    |
| t <sub>ESBRP</sub>      | 1.0            |     | 1.3            |     | 1.4            | _   | ns    |

| Symbol                  | -1    |      | -2    |      | -3   |      | Unit |
|-------------------------|-------|------|-------|------|------|------|------|
|                         | Min   | Max  | Min   | Max  | Min  | Max  |      |
| t <sub>ESBARC</sub>     |       | 1.65 |       | 2.02 |      | 2.11 | ns   |
| t <sub>ESBSRC</sub>     |       | 2.21 |       | 2.70 |      | 3.11 | ns   |
| t <sub>ESBAWC</sub>     |       | 3.04 |       | 3.79 |      | 4.42 | ns   |
| t <sub>ESBSWC</sub>     |       | 2.81 |       | 3.56 |      | 4.10 | ns   |
| t <sub>ESBWASU</sub>    | 0.54  |      | 0.66  |      | 0.73 |      | ns   |
| t <sub>ESBWAH</sub>     | 0.36  |      | 0.45  |      | 0.47 |      | ns   |
| t <sub>ESBWDSU</sub>    | 0.68  |      | 0.81  |      | 0.94 |      | ns   |
| t <sub>ESBWDH</sub>     | 0.36  |      | 0.45  |      | 0.47 |      | ns   |
| t <sub>ESBRASU</sub>    | 1.58  |      | 1.87  |      | 2.06 |      | ns   |
| t <sub>ESBRAH</sub>     | 0.00  |      | 0.00  |      | 0.01 |      | ns   |
| t <sub>ESBWESU</sub>    | 1.41  |      | 1.71  |      | 2.00 |      | ns   |
| t <sub>ESBWEH</sub>     | 0.00  |      | 0.00  |      | 0.00 |      | ns   |
| t <sub>ESBDATASU</sub>  | -0.02 |      | -0.03 |      | 0.09 |      | ns   |
| t <sub>ESBDATAH</sub>   | 0.13  |      | 0.13  |      | 0.13 |      | ns   |
| t <sub>ESBWADDRSU</sub> | 0.14  |      | 0.17  |      | 0.35 |      | ns   |
| t <sub>ESBRADDRSU</sub> | 0.21  |      | 0.27  |      | 0.43 |      | ns   |
| t <sub>ESBDATACO1</sub> |       | 1.04 |       | 1.30 |      | 1.46 | ns   |
| t <sub>ESBDATACO2</sub> |       | 2.15 |       | 2.70 |      | 3.16 | ns   |
| t <sub>ESBDD</sub>      |       | 2.69 |       | 3.35 |      | 3.97 | ns   |
| t <sub>PD</sub>         |       | 1.55 |       | 1.93 | _    | 2.29 | ns   |
| t <sub>PTERMSU</sub>    | 1.01  |      | 1.23  |      | 1.52 |      | ns   |
| t <sub>PTERMCO</sub>    |       | 1.06 |       | 1.32 |      | 1.04 | ns   |

| Symbol                  | -1    |      |       | -2   |      | -3   |    |
|-------------------------|-------|------|-------|------|------|------|----|
|                         | Min   | Max  | Min   | Max  | Min  | Max  | 1  |
| t <sub>ESBARC</sub>     |       | 1.68 |       | 2.06 |      | 2.24 | ns |
| t <sub>ESBSRC</sub>     |       | 2.27 |       | 2.77 |      | 3.18 | ns |
| t <sub>ESBAWC</sub>     |       | 3.10 |       | 3.86 |      | 4.50 | ns |
| t <sub>ESBSWC</sub>     |       | 2.90 |       | 3.67 |      | 4.21 | ns |
| t <sub>ESBWASU</sub>    | 0.55  |      | 0.67  |      | 0.74 |      | ns |
| t <sub>ESBWAH</sub>     | 0.36  |      | 0.46  |      | 0.48 |      | ns |
| t <sub>ESBWDSU</sub>    | 0.69  |      | 0.83  |      | 0.95 |      | ns |
| t <sub>ESBWDH</sub>     | 0.36  |      | 0.46  |      | 0.48 |      | ns |
| t <sub>ESBRASU</sub>    | 1.61  |      | 1.90  |      | 2.09 |      | ns |
| t <sub>ESBRAH</sub>     | 0.00  |      | 0.00  |      | 0.01 |      | ns |
| t <sub>ESBWESU</sub>    | 1.42  |      | 1.71  |      | 2.01 |      | ns |
| t <sub>ESBWEH</sub>     | 0.00  |      | 0.00  |      | 0.00 |      | ns |
| t <sub>ESBDATASU</sub>  | -0.06 |      | -0.07 |      | 0.05 |      | ns |
| t <sub>ESBDATAH</sub>   | 0.13  |      | 0.13  |      | 0.13 |      | ns |
| t <sub>ESBWADDRSU</sub> | 0.11  |      | 0.13  |      | 0.31 |      | ns |
| t <sub>ESBRADDRSU</sub> | 0.18  |      | 0.23  |      | 0.39 |      | ns |
| t <sub>ESBDATACO1</sub> |       | 1.09 |       | 1.35 |      | 1.51 | ns |
| t <sub>ESBDATACO2</sub> |       | 2.19 |       | 2.75 |      | 3.22 | ns |
| t <sub>ESBDD</sub>      |       | 2.75 |       | 3.41 |      | 4.03 | ns |
| t <sub>PD</sub>         |       | 1.58 |       | 1.97 |      | 2.33 | ns |
| t <sub>PTERMSU</sub>    | 1.00  |      | 1.22  |      | 1.51 |      | ns |
| t <sub>PTERMCO</sub>    |       | 1.10 |       | 1.37 |      | 1.09 | ns |

| Table 75. EP2      | Table 75. EP20K200E f <sub>MAX</sub> Routing Delays |      |       |      |     |      |    |  |  |  |  |
|--------------------|-----------------------------------------------------|------|-------|------|-----|------|----|--|--|--|--|
| Symbol             | -                                                   | 1    | -2 -3 |      | 3   | Unit |    |  |  |  |  |
|                    | Min                                                 | Max  | Min   | Max  | Min | Max  |    |  |  |  |  |
| t <sub>F1-4</sub>  |                                                     | 0.25 |       | 0.27 |     | 0.29 | ns |  |  |  |  |
| t <sub>F5-20</sub> |                                                     | 1.02 |       | 1.20 |     | 1.41 | ns |  |  |  |  |
| t <sub>F20+</sub>  |                                                     | 1.99 |       | 2.23 |     | 2.53 | ns |  |  |  |  |

| Symbol             | -1   |     | -2   |     | -3   |     | Unit |
|--------------------|------|-----|------|-----|------|-----|------|
|                    | Min  | Max | Min  | Max | Min  | Max |      |
| t <sub>CH</sub>    | 1.25 |     | 1.43 |     | 1.67 |     | ns   |
| t <sub>CL</sub>    | 1.25 |     | 1.43 |     | 1.67 |     | ns   |
| t <sub>CLRP</sub>  | 0.19 |     | 0.26 |     | 0.35 |     | ns   |
| t <sub>PREP</sub>  | 0.19 |     | 0.26 |     | 0.35 |     | ns   |
| t <sub>ESBCH</sub> | 1.25 |     | 1.43 |     | 1.67 |     | ns   |
| t <sub>ESBCL</sub> | 1.25 |     | 1.43 |     | 1.67 |     | ns   |
| t <sub>ESBWP</sub> | 1.25 |     | 1.71 |     | 2.28 |     | ns   |
| t <sub>ESBRP</sub> | 1.01 |     | 1.38 |     | 1.84 |     | ns   |

| Symbol               | -1   |      | -2   |      | -3   |      | Unit |
|----------------------|------|------|------|------|------|------|------|
|                      | Min  | Max  | Min  | Max  | Min  | Max  |      |
| t <sub>INSU</sub>    | 2.31 |      | 2.44 |      | 2.57 |      | ns   |
| t <sub>INH</sub>     | 0.00 |      | 0.00 |      | 0.00 |      | ns   |
| t <sub>OUTCO</sub>   | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns   |
| t <sub>INSUPLL</sub> | 1.76 |      | 1.85 |      | -    |      | ns   |
| t <sub>INHPLL</sub>  | 0.00 |      | 0.00 |      | -    |      | ns   |
| toutcople            | 0.50 | 2.65 | 0.50 | 2.95 | _    | -    | ns   |

| Symbol                    | -1   |      | -2   |      | -3   |      | Unit |
|---------------------------|------|------|------|------|------|------|------|
|                           | Min  | Max  | Min  | Max  | Min  | Max  | 1    |
| t <sub>INSUBIDIR</sub>    | 2.77 |      | 2.85 |      | 3.11 |      | ns   |
| t <sub>INHBIDIR</sub>     | 0.00 |      | 0.00 |      | 0.00 |      | ns   |
| t <sub>OUTCOBIDIR</sub>   | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns   |
| t <sub>XZBIDIR</sub>      |      | 7.59 |      | 8.30 |      | 9.09 | ns   |
| t <sub>ZXBIDIR</sub>      |      | 7.59 |      | 8.30 |      | 9.09 | ns   |
| t <sub>INSUBIDIRPLL</sub> | 2.50 |      | 2.76 |      | -    |      | ns   |
| t <sub>INHBIDIRPLL</sub>  | 0.00 |      | 0.00 |      | -    |      | ns   |
| toutcobidirpll            | 0.50 | 2.65 | 0.50 | 2.95 | -    | -    | ns   |
| t <sub>XZBIDIRPLL</sub>   |      | 5.00 |      | 5.43 |      | -    | ns   |
| tzxbidirpll               |      | 5.00 |      | 5.43 |      | -    | ns   |

# Revision History

The information contained in the *APEX 20K Programmable Logic Device Family Data Sheet* version 5.1 supersedes information published in previous versions.

#### Version 5.1

APEX 20K Programmable Logic Device Family Data Sheet version 5.1 contains the following changes:

- In version 5.0, the VI input voltage spec was updated in Table 28 on page 63.
- In version 5.0, *Note* (5) to Tables 27 through 30 was revised.
- Added Note (2) to Figure 21 on page 33.

#### Version 5.0

APEX 20K Programmable Logic Device Family Data Sheet version 5.0 contains the following changes:

- Updated Tables 23 through 26. Removed 2.5-V operating condition tables because all APEX 20K devices are now 5.0-V tolerant.
- Updated conditions in Tables 33, 38 and 39.
- Updated data for t<sub>ESBDATAH</sub> parameter.

#### Version 4.3

APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains the following changes:

- Updated Figure 20.
- Updated *Note* (2) to Table 13.
- Updated notes to Tables 27 through 30.

#### Version 4.2

APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains the following changes:

- Updated Figure 29.
- Updated *Note* (1) to Figure 29.