Welcome to **E-XFL.COM** ### Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Obsolete | | Number of LABs/CLBs | 1152 | | Number of Logic Elements/Cells | 11520 | | Total RAM Bits | 147456 | | Number of I/O | - | | Number of Gates | 728000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | - | | Supplier Device Package | - | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k300erc208-1 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Each LAB contains dedicated logic for driving control signals to its LEs and ESBs. The control signals include clock, clock enable, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, and synchronous load signals. A maximum of six control signals can be used at a time. Although synchronous load and clear signals are generally used when implementing counters, they can also be used with other functions. Each LAB can use two clocks and two clock enable signals. Each LAB's clock and clock enable signals are linked (e.g., any LE in a particular LAB using CLK1 will also use CLKENA1). LEs with the same clock but different clock enable signals either use both clock signals in one LAB or are placed into separate LABs. If both the rising and falling edges of a clock are used in a LAB, both LAB-wide clock signals are used. The LAB-wide control signals can be generated from the LAB local interconnect, global signals, and dedicated clock pins. The inherent low skew of the FastTrack Interconnect enables it to be used for clock distribution. Figure 4 shows the LAB control signal generation circuit. Figure 4. LAB Control Signal Generation #### Notes to Figure 4: - (1) APEX 20KE devices have four dedicated clocks. - (2) The LABCLR1 and LABCLR2 signals also control asynchronous load and asynchronous preset for LEs within the LAB. - (3) The SYNCCLR signal can be generated by the local interconnect or global signals. Figure 8. APEX 20K LE Operating Modes #### Notes to Figure 8: - (1) LEs in normal mode support register packing. - (2) There are two LAB-wide clock enables per LAB. - (3) When using the carry-in in normal mode, the packed register feature is unavailable. - (4) A register feedback multiplexer is available on LE1 of each LAB. - (5) The DATA1 and DATA2 input signals can supply counter enable, up or down control, or register feedback signals for LEs other than the second LE in an LAB. - (6) The LAB-wide synchronous clear and LAB wide synchronous load affect all registers in an LAB. #### Normal Mode The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II software Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers. #### Arithmetic Mode The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used. #### Counter Mode The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs. Figure 9. APEX 20K Interconnect Structure A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure. A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows. Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures. Figure 10. FastTrack Connection to Local Interconnect | Source | | Destination | | | | | | | | | |----------------------------------|----------------|-------------------|----------|----------|-----------------------|-------------------------|----------------------------------|-------------------------------------|-------------------------|--| | | Row
I/O Pin | Column
I/O Pin | LE | ESB | Local
Interconnect | MegaLAB
Interconnect | Row
FastTrack
Interconnect | Column
FastTrack
Interconnect | FastRow
Interconnect | | | Row I/O Pin | | | | | ✓ | ✓ | ✓ | ✓ | | | | Column I/O
Pin | | | | | | | | ✓ | √ (1) | | | LE | | | | | ✓ | ✓ | ✓ | ✓ | | | | ESB | | | | | ✓ | ✓ | ✓ | ✓ | | | | Local
Interconnect | ✓ | ✓ | ✓ | ✓ | | | | | | | | MegaLAB
Interconnect | | | | | ~ | | | | | | | Row
FastTrack
Interconnect | | | | | | ✓ | | ✓ | | | | Column | | | | | | ✓ | ✓ | | | | | FastTrack
Interconnect | | | | | | | | | | | | FastRow
Interconnect | | | | | ✓ (1) | | | | | | Note to Table 9: (1) This connection is supported in APEX 20KE devices only. #### **Product-Term Logic** The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals. In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode. Figure 26. APEX 20KE Bidirectional I/O Registers Notes (1), (2) Row, Column, FastRow, 4 Dedicated or Local Interconnect Clock Inputs Notes to Figure 26: - (1) This programmable delay has four settings: off and three levels of delay. - (2) The output enable and input registers are LE registers in the LAB adjacent to the bidirectional pin. APEX 20KE devices also support the MultiVolt I/O interface feature. The APEX 20KE VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KE device is 5.0-V tolerant with the addition of a resistor. Table 13 summarizes APEX 20KE MultiVolt I/O support. | Table 13. A | Table 13. APEX 20KE MultiVolt I/O Support Note (1) | | | | | | | | | | |-----------------------|--|-----------|-----------|-----|-----|----------|--------------|-----|--|--| | V _{CCIO} (V) | | Input Sig | ınals (V) | | | Output S | ignals (V) | | | | | | 1.8 | 2.5 | 3.3 | 5.0 | 1.8 | 2.5 | 3.3 | 5.0 | | | | 1.8 | ✓ | ✓ | ✓ | | ✓ | | | | | | | 2.5 | ✓ | ✓ | ✓ | | | ✓ | | | | | | 3.3 | ✓ | ✓ | \ | (2) | | | √ (3) | | | | #### Notes to Table 13: - The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case. - (2) An APEX 20KE device can be made 5.0-V tolerant with the addition of an external resistor. You also need a PCI clamp and series resistor. - (3) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20KE device can drive a 2.5-V device with 3.3-V tolerant inputs. # ClockLock & ClockBoost Features APEX 20K devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20K devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20K device's high-speed clock to provide significant improvements in system performance and band-width. Devices with an X-suffix on the ordering code include the ClockLock circuit. The ClockLock and ClockBoost features in APEX 20K devices are enabled through the Quartus II software. External devices are not required to use these features. | Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2) | | | | | | | |---|--|-----|-----|------|--|--| | Symbol | Parameter | Min | Max | Unit | | | | t _{SKEW} | Skew delay between related ClockLock/ClockBoost-generated clocks | | 500 | ps | | | | t _{JITTER} | Jitter on ClockLock/ClockBoost-generated clock (5) | | 200 | ps | | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | | | #### Notes to Table 15: - (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz. - (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time. - (4) The jitter specification is measured under long-term observation. - (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps. Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices. | Symbol | Parameter | Min | Max | Unit | | |-----------------------|--|-----|------------|------|--| | f _{OUT} | Output frequency | 25 | 170 | MHz | | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 25 | 170 | MHz | | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | 16 | 80 | MHz | | | f _{CLK4} | Input clock frequency (ClockBoost clock multiplication factor equals 4) | 10 | 34 | MHz | | | t _{OUTDUTY} | Duty cycle for ClockLock/ClockBoost-generated clock | 40 | 60 | % | | | f _{CLKDEV} | Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1) | | 25,000 (2) | PPM | | | t _R | Input rise time | | 5 | ns | | | t _F | Input fall time | | 5 | ns | | | t _{LOCK} | Time required for ClockLock/ ClockBoost to acquire lock (3) | | 10 | μѕ | | | t _{SKEW} | Skew delay between related ClockLock/ ClockBoost-generated clock | 500 | 500 | ps | | | t _{JITTER} | Jitter on ClockLock/ ClockBoost-generated clock (4) | | 200 | ps | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | | | Symbol | Parameter | I/O Standard | -1X Speed Grade | | -2X Speed Grade | | Units | |-------------------------|---|-------------------|-----------------|-----|-----------------|-----|-------| | | | | Min | Max | Min | Max | | | f _{VCO} (4) | Voltage controlled oscillator operating range | | 200 | 500 | 200 | 500 | MHz | | f _{CLOCK0} | Clock0 PLL output frequency for internal use | | 1.5 | 335 | 1.5 | 200 | MHz | | f _{CLOCK1} | Clock1 PLL output frequency for internal use | | 20 | 335 | 20 | 200 | MHz | | f _{CLOCK0_EXT} | Output clock frequency for | 3.3-V LVTTL | 1.5 | 245 | 1.5 | 226 | MHz | | | external clock0 output | 2.5-V LVTTL | 1.5 | 234 | 1.5 | 221 | MHz | | | | 1.8-V LVTTL | 1.5 | 223 | 1.5 | 216 | MHz | | | | GTL+ | 1.5 | 205 | 1.5 | 193 | MHz | | | | SSTL-2 Class | 1.5 | 158 | 1.5 | 157 | MHz | | | | SSTL-2 Class | 1.5 | 142 | 1.5 | 142 | MHz | | | | SSTL-3 Class | 1.5 | 166 | 1.5 | 162 | MHz | | | | SSTL-3 Class | 1.5 | 149 | 1.5 | 146 | MHz | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | f _{CLOCK1_EXT} | Output clock frequency for | 3.3-V LVTTL | 20 | 245 | 20 | 226 | MHz | | | external clock1 output | 2.5-V LVTTL | 20 | 234 | 20 | 221 | MHz | | | | 1.8-V LVTTL | 20 | 223 | 20 | 216 | MHz | | | | GTL+ | 20 | 205 | 20 | 193 | MHz | | | | SSTL-2 Class
I | 20 | 158 | 20 | 157 | MHz | | | | SSTL-2 Class | 20 | 142 | 20 | 142 | MHz | | | | SSTL-3 Class | 20 | 166 | 20 | 162 | MHz | | | | SSTL-3 Class | 20 | 149 | 20 | 146 | MHz | | | | LVDS | 20 | 420 | 20 | 350 | MHz | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|---|---|-----|-----|-------------------------|------| | V _{OL} | 3.3-V low-level TTL output voltage | I _{OL} = 12 mA DC,
V _{CCIO} = 3.00 V (11) | | | 0.45 | V | | | 3.3-V low-level CMOS output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 3.00 V (11) | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I _{OL} = 1.5 mA DC,
V _{CCIO} = 3.00 to 3.60 V
(11) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.30 V (11) | | | 0.2 | ٧ | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.30 V (11) | | | 0.4 | ٧ | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.30 V (11) | | | 0.7 | ٧ | | I _I | Input pin leakage current | $V_1 = 5.75 \text{ to } -0.5 \text{ V}$ | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_O = 5.75 \text{ to } -0.5 \text{ V}$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby)
(All ESBs in power-down mode) | V _I = ground, no load, no toggling inputs, -1 speed grade (12) | | 10 | | mA | | | | V _I = ground, no load, no toggling inputs,
-2, -3 speed grades (12) | | 5 | | mA | | R _{CONF} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 V (13) | 20 | | 50 | W | | | before and during configuration | V _{CCIO} = 2.375 V (13) | 30 | | 80 | W | For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).* | Table 30. | Table 30. APEX 20KE Device Capacitance Note (15) | | | | | | | | |--------------------|--|-------------------------------------|-----|-----|------|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | C _{IN} | Input capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{INCLK} | Input capacitance on dedicated clock pin | V _{IN} = 0 V, f = 1.0 MHz | | 12 | pF | | | | | C _{OUT} | Output capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | #### Notes to Tables 27 through 30: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) Numbers in parentheses are for industrial-temperature-range devices. - (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically. - (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle. Vin Max. Duty Cycle 4.0V 100% (DC) 4.1 90% 4.2 50% 4.3 30% 4.4 17% 4.5 10% - (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V. - (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60. - (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V. - (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL. - (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current. - (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins. - (13) This value is specified for normal device operation. The value may vary during power-up. - (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}. - (15) Capacitance is sample-tested only. Figure 33 shows the relationship between V_{CCIO} and V_{CCINT} for 3.3-V PCI compliance on APEX 20K devices. Figure 33. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance Figure 34 shows the typical output drive characteristics of APEX 20K devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compatible with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). 5-V tolerant APEX 20K devices in the -1 speed grade are 5-V PCI compliant over all operating conditions. Figure 34. Output Drive Characteristics of APEX 20K Device Note (1) Note to Figure 34: (1) These are transient (AC) currents. Figure 37. APEX 20KE f_{MAX} Timing Model | Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2) | | | | | | | |---|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | t _{ESBDATACO2} | ESB clock-to-output delay without output registers | | | | | | | t _{ESBDD} | ESB data-in to data-out delay for RAM mode | | | | | | | t _{PD} | ESB macrocell input to non-registered output | | | | | | | t _{PTERMSU} | ESB macrocell register setup time before clock | | | | | | | t _{PTERMCO} | ESB macrocell register clock-to-output delay | | | | | | | t _{F1-4} | Fanout delay using local interconnect | | | | | | | t _{F5-20} | Fanout delay using MegaLab Interconnect | | | | | | | t _{F20+} | Fanout delay using FastTrack Interconnect | | | | | | | t _{CH} | Minimum clock high time from clock pin | | | | | | | t _{CL} | Minimum clock low time from clock pin | | | | | | | t _{CLRP} | LE clear pulse width | | | | | | | t _{PREP} | LE preset pulse width | | | | | | | t _{ESBCH} | Clock high time | | | | | | | t _{ESBCL} | Clock low time | | | | | | | t _{ESBWP} | Write pulse width | | | | | | | t _{ESBRP} | Read pulse width | | | | | | Tables 32 and 33 describe APEX 20K external timing parameters. | Table 32. APEX 20 | Table 32. APEX 20K External Timing Parameters Note (1) | | | | | | |--------------------|---|--|--|--|--|--| | Symbol | Clock Parameter | | | | | | | t _{INSU} | Setup time with global clock at IOE register | | | | | | | t _{INH} | Hold time with global clock at IOE register | | | | | | | t _{OUTCO} | Clock-to-output delay with global clock at IOE register | | | | | | | Table 33. APEX 20K External Bidirectional Timing Parameters Note (1) | | | | | | | |--|--|------------|--|--|--|--| | Symbol | Symbol Parameter | | | | | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 10 pF | | | | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | C1 = 10 pF | | | | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | C1 = 10 pF | | | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | Units | | |-------------------------|----------------|-----|----------------|-----|---------|-------|----| | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.1 | | 0.3 | | 0.6 | | ns | | t _H | 0.5 | | 0.8 | | 0.9 | | ns | | t _{CO} | | 0.1 | | 0.4 | | 0.6 | ns | | t _{LUT} | | 1.0 | | 1.2 | | 1.4 | ns | | t _{ESBRC} | | 1.7 | | 2.1 | | 2.4 | ns | | t _{ESBWC} | | 5.7 | | 6.9 | | 8.1 | ns | | t _{ESBWESU} | 3.3 | | 3.9 | | 4.6 | | ns | | t _{ESBDATASU} | 2.2 | | 2.7 | | 3.1 | | ns | | t _{ESBDATAH} | 0.6 | | 0.8 | | 0.9 | | ns | | t _{ESBADDRSU} | 2.4 | | 2.9 | | 3.3 | | ns | | t _{ESBDATACO1} | | 1.3 | | 1.6 | | 1.8 | ns | | t _{ESBDATACO2} | | 2.5 | | 3.1 | | 3.6 | ns | | t _{ESBDD} | | 2.5 | | 3.3 | | 3.6 | ns | | t _{PD} | | 2.5 | | 3.1 | | 3.6 | ns | | t _{PTERMSU} | 1.7 | | 2.1 | | 2.4 | | ns | | t _{PTERMCO} | | 1.0 | | 1.2 | | 1.4 | ns | | t _{F1-4} | | 0.4 | | 0.5 | | 0.6 | ns | | t _{F5-20} | | 2.6 | | 2.8 | | 2.9 | ns | | t _{F20+} | | 3.7 | | 3.8 | | 3.9 | ns | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{CLRP} | 0.5 | | 0.6 | | 0.8 | | ns | | t _{PREP} | 0.5 | | 0.5 | | 0.5 | | ns | | t _{ESBCH} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{ESBCL} | 2.0 | | 2.5 | | 3.0 | | ns | | t _{ESBWP} | 1.5 | | 1.9 | | 2.2 | | ns | | t _{ESBRP} | 1.0 | | 1.2 | | 1.4 | | ns | Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices. | Table 62. EP20K | I GOL IMAX LOL | , iming mid | 1 | | T | | 1 | |-------------------------|----------------|-------------|-------|------|-------|------|------| | Symbol | -1 | | -2 | | -: | 3 | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.61 | | 1.84 | | 1.97 | ns | | t _{ESBSRC} | | 2.57 | | 2.97 | | 3.20 | ns | | t _{ESBAWC} | | 0.52 | | 4.09 | | 4.39 | ns | | t _{ESBSWC} | | 3.17 | | 3.78 | | 4.09 | ns | | t _{ESBWASU} | 0.56 | | 6.41 | | 0.63 | | ns | | t _{ESBWAH} | 0.48 | | 0.54 | | 0.55 | | ns | | t _{ESBWDSU} | 0.71 | | 0.80 | | 0.81 | | ns | | t _{ESBWDH} | .048 | | 0.54 | | 0.55 | | ns | | t _{ESBRASU} | 1.57 | | 1.75 | | 1.87 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.20 | | ns | | t _{ESBWESU} | 1.54 | | 1.72 | | 1.80 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.16 | | -0.20 | | -0.20 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.12 | | 0.08 | | 0.13 | | ns | | t _{ESBRADDRSU} | 0.17 | | 0.15 | | 0.19 | | ns | | t _{ESBDATACO1} | | 1.20 | | 1.39 | | 1.52 | ns | | t _{ESBDATACO2} | | 2.54 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.06 | | 3.56 | | 3.85 | ns | | t _{PD} | | 1.73 | | 2.02 | | 2.20 | ns | | t _{PTERMSU} | 1.11 | | 1.26 | | 1.38 | | ns | | t _{PTERMCO} | | 1.19 | | 1.40 | | 1.08 | ns | | Table 63. EP20K100E f _{MAX} Routing Delays | | | | | | | | | | | |---|-----|------|-----|------|-----|------|------|--|--|--| | Symbol | - | 1 | - | -2 | -3 | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.24 | | 0.27 | | 0.29 | ns | | | | | t _{F5-20} | | 1.04 | | 1.26 | | 1.52 | ns | | | | | t _{F20+} | | 1.12 | | 1.36 | | 1.86 | ns | | | | | Table 99. EP20K1000E f _{MAX} Routing Delays | | | | | | | | | | | |--|---------|---------|---------|----------|---------|------|----|--|--|--| | Symbol | -1 Spee | d Grade | -2 Spec | ed Grade | -3 Spee | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{F1-4} | | 0.27 | | 0.27 | | 0.27 | ns | | | | | t _{F5-20} | | 1.45 | | 1.63 | | 1.75 | ns | | | | | t _{F20+} | | 4.15 | | 4.33 | | 4.97 | ns | | | | | Table 100. EP20K1000E Minimum Pulse Width Timing Parameters | | | | | | | | | | | |---|----------------|-----|----------------|-----|---------|------|----|--|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | Unit | | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{CH} | 1.25 | | 1.43 | | 1.67 | | ns | | | | | t _{CL} | 1.25 | | 1.43 | | 1.67 | | ns | | | | | t _{CLRP} | 0.20 | | 0.20 | | 0.20 | | ns | | | | | t _{PREP} | 0.20 | | 0.20 | | 0.20 | | ns | | | | | t _{ESBCH} | 1.25 | | 1.43 | | 1.67 | | ns | | | | | t _{ESBCL} | 1.25 | | 1.43 | | 1.67 | | ns | | | | | t _{ESBWP} | 1.28 | | 1.51 | | 1.65 | | ns | | | | | t _{ESBRP} | 1.11 | | 1.29 | | 1.41 | | ns | | | | | Symbol | -1 Speed Grade | | -2 Spee | -2 Speed Grade | | -3 Speed Grade | | |----------------------|----------------|------|---------|----------------|------|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.70 | | 2.84 | | 2.97 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.75 | 2.00 | 6.33 | 2.00 | 6.90 | ns | | t _{INSUPLL} | 1.64 | | 2.09 | | - | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | toutcople | 0.50 | 2.25 | 0.50 | 2.99 | - | - | ns | | Symbol | -1 Speed Grade | | -2 Spee | d Grade | -3 Spee | Unit | | |---------------------------|----------------|------|---------|---------|---------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{INSUBIDIR} | 3.47 | | 3.68 | | 3.99 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 6.18 | 2.00 | 6.81 | 2.00 | 7.36 | ns | | t _{XZBIDIR} | | 6.91 | | 7.62 | | 8.38 | ns | | t _{ZXBIDIR} | | 6.91 | | 7.62 | | 8.38 | ns | | t _{INSUBIDIRPLL} | 3.05 | | 3.26 | | | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | | | ns | | toutcobidirpll | 0.50 | 2.67 | 0.50 | 2.99 | | | ns | | t _{XZBIDIRPLL} | | 3.41 | | 3.80 | | | ns | | tzxbidirpll | | 3.41 | | 3.80 | | | ns | Tables 109 and 110 show selectable I/O standard input and output delays for APEX 20KE devices. If you select an I/O standard input or output delay other than LVCMOS, add or subtract the selected speed grade to or from the LVCMOS value. | Table 109. Selectable I/O Standard Input Delays | | | | | | | | | | |---|----------------|-------|----------------|-------|----------------|-------|------|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | Min | Max | Min | Max | Min | Max | Min | | | | LVCMOS | | 0.00 | | 0.00 | | 0.00 | ns | | | | LVTTL | | 0.00 | | 0.00 | | 0.00 | ns | | | | 2.5 V | | 0.00 | | 0.04 | | 0.05 | ns | | | | 1.8 V | | -0.11 | | 0.03 | | 0.04 | ns | | | | PCI | | 0.01 | | 0.09 | | 0.10 | ns | | | | GTL+ | | -0.24 | | -0.23 | | -0.19 | ns | | | | SSTL-3 Class I | | -0.32 | | -0.21 | | -0.47 | ns | | | | SSTL-3 Class II | | -0.08 | | 0.03 | | -0.23 | ns | | | | SSTL-2 Class I | | -0.17 | | -0.06 | | -0.32 | ns | | | | SSTL-2 Class II | | -0.16 | | -0.05 | | -0.31 | ns | | | | LVDS | | -0.12 | | -0.12 | | -0.12 | ns | | | | CTT | | 0.00 | | 0.00 | | 0.00 | ns | | | | AGP | | 0.00 | | 0.00 | | 0.00 | ns | | | | Table 110. Selectable I/O Standard Output Delays | | | | | | | | | | |--|----------------|-------|----------------|-------|----------------|-------|------|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | Min | Max | Min | Max | Min | Max | Min | | | | LVCMOS | | 0.00 | | 0.00 | | 0.00 | ns | | | | LVTTL | | 0.00 | | 0.00 | | 0.00 | ns | | | | 2.5 V | | 0.00 | | 0.09 | | 0.10 | ns | | | | 1.8 V | | 2.49 | | 2.98 | | 3.03 | ns | | | | PCI | | -0.03 | | 0.17 | | 0.16 | ns | | | | GTL+ | | 0.75 | | 0.75 | | 0.76 | ns | | | | SSTL-3 Class I | | 1.39 | | 1.51 | | 1.50 | ns | | | | SSTL-3 Class II | | 1.11 | | 1.23 | | 1.23 | ns | | | | SSTL-2 Class I | | 1.35 | | 1.48 | | 1.47 | ns | | | | SSTL-2 Class II | | 1.00 | | 1.12 | | 1.12 | ns | | | | LVDS | | -0.48 | | -0.48 | | -0.48 | ns | | | | CTT | | 0.00 | | 0.00 | | 0.00 | ns | | | | AGP | | 0.00 | | 0.00 | | 0.00 | ns | | | ### Power Consumption To estimate device power consumption, use the interactive power calculator on the Altera web site at http://www.altera.com. ## Configuration & Operation The APEX 20K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes. #### **Operating Modes** The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*. Before and during device configuration, all I/O pins are pulled to $V_{\mbox{\scriptsize CCIO}}$ by a built-in weak pull-up resistor.