Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. # **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 1152 | | Number of Logic Elements/Cells | 11520 | | Total RAM Bits | 147456 | | Number of I/O | - | | Number of Gates | 728000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 208-BFQFP Exposed Pad | | Supplier Device Package | 208-RQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k300erc208-2x | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. Additional APEX 20K Device Features | | | Note (1) | | | | |--|-----------|-----------|-----------|-----------|------------|------------| | Feature | EP20K300E | EP20K400 | EP20K400E | EP20K600E | EP20K1000E | EP20K1500E | | Maximum system gates | 728,000 | 1,052,000 | 1,052,000 | 1,537,000 | 1,772,000 | 2,392,000 | | Typical gates | 300,000 | 400,000 | 400,000 | 600,000 | 1,000,000 | 1,500,000 | | LEs | 11,520 | 16,640 | 16,640 | 24,320 | 38,400 | 51,840 | | ESBs | 72 | 104 | 104 | 152 | 160 | 216 | | Maximum
RAM bits | 147,456 | 212,992 | 212,992 | 311,296 | 327,680 | 442,368 | | Maximum macrocells | 1,152 | 1,664 | 1,664 | 2,432 | 2,560 | 3,456 | | Maximum user I/O pins | 408 | 502 | 488 | 588 | 708 | 808 | #### Note to Tables 1 and 2: (1) The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates. # Additional Features - Designed for low-power operation - 1.8-V and 2.5-V supply voltage (see Table 3) - MultiVoltTM I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3) - ESB offering programmable power-saving mode | Feature | Device | | | |---|----------------------------------|--|--| | | EP20K100
EP20K200
EP20K400 | EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E | | | Internal supply voltage (V _{CCINT}) | 2.5 V | 1.8 V | | | MultiVolt I/O interface voltage levels (V _{CCIO}) | 2.5 V, 3.3 V, 5.0 V | 1.8 V, 2.5 V, 3.3 V, 5.0 V (1) | | Note to Table 3: (1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor. # **Logic Array Block** Each LAB consists of 10 LEs, the LEs' associated carry and cascade chains, LAB control signals, and the local interconnect. The local interconnect transfers signals between LEs in the same or adjacent LABs, IOEs, or ESBs. The Quartus II Compiler places associated logic within an LAB or adjacent LABs, allowing the use of a fast local interconnect for high performance. Figure 3 shows the APEX 20K LAB. APEX 20K devices use an interleaved LAB structure. This structure allows each LE to drive two local interconnect areas. This feature minimizes use of the MegaLAB and FastTrack interconnect, providing higher performance and flexibility. Each LE can drive 29 other LEs through the fast local interconnect. Altera Corporation 11 can drive two local interconnect areas. # Logic Element The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5. Figure 5. APEX 20K Logic Element Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE. Figure 6. APEX 20K Carry Chain Figure 9. APEX 20K Interconnect Structure A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure. A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows. Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures. Table 10 describes the APEX 20K programmable delays and their logic options in the Quartus II software. | Table 10. APEX 20K Programmable Delay Chains | | | | |--|--|--|--| | Programmable Delays Quartus II Logic Option | | | | | Input pin to core delay | Decrease input delay to internal cells | | | | Input pin to input register delay | Decrease input delay to input register | | | | Core to output register delay Decrease input delay to output registe | | | | | Output register t _{CO} delay | Increase delay to output pin | | | The Quartus II software compiler can program these delays automatically to minimize setup time while providing a zero hold time. Figure 25 shows how fast bidirectional I/Os are implemented in APEX 20K devices. The register in the APEX 20K IOE can be programmed to power-up high or low after configuration is complete. If it is programmed to power-up low, an asynchronous clear can control the register. If it is programmed to power-up high, the register cannot be asynchronously cleared or preset. This feature is useful for cases where the APEX 20K device controls an active-low input or another device; it prevents inadvertent activation of the input upon power-up. Each IOE drives a row, column, MegaLAB, or local interconnect when used as an input or bidirectional pin. A row IOE can drive a local, MegaLAB, row, and column interconnect; a column IOE can drive the column interconnect. Figure 27 shows how a row IOE connects to the interconnect. Figure 27. Row IOE Connection to the Interconnect Figure 28 shows how a column IOE connects to the interconnect. Figure 28. Column IOE Connection to the Interconnect ### **Dedicated Fast I/O Pins** APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed. | Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2) | | | | | |---|--|-----|-----|------| | Symbol | Parameter | Min | Max | Unit | | t _{SKEW} | Skew delay between related ClockLock/ClockBoost-generated clocks | | 500 | ps | | t _{JITTER} | Jitter on ClockLock/ClockBoost-generated clock (5) | | 200 | ps | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | #### Notes to Table 15: - (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz. - (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time. - (4) The jitter specification is measured under long-term observation. - (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps. Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices. | Symbol | Parameter | Min | Max | Unit | |-----------------------|--|-----|------------|------| | f _{OUT} | Output frequency | 25 | 170 | MHz | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 25 | 170 | MHz | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | 16 | 80 | MHz | | f _{CLK4} | Input clock frequency (ClockBoost clock multiplication factor equals 4) | 10 | 34 | MHz | | t _{OUTDUTY} | Duty cycle for ClockLock/ClockBoost-generated clock | 40 | 60 | % | | f _{CLKDEV} | Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1) | | 25,000 (2) | PPM | | t _R | Input rise time | | 5 | ns | | t _F | Input fall time | | 5 | ns | | t _{LOCK} | Time required for ClockLock/ ClockBoost to acquire lock (3) | | 10 | μѕ | | t _{SKEW} | Skew delay between related ClockLock/ ClockBoost-generated clock | 500 | 500 | ps | | t _{JITTER} | Jitter on ClockLock/ ClockBoost-generated clock (4) | | 200 | ps | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | | Symbol | Parameter | I/O Standard | -1X Speed Grade | | -2X Speed Grade | | Units | |-------------------------|---|-------------------|-----------------|-----|-----------------|-----|-------| | | | | Min | Max | Min | Max | | | f _{VCO} (4) | Voltage controlled oscillator operating range | | 200 | 500 | 200 | 500 | MHz | | f _{CLOCK0} | Clock0 PLL output frequency for internal use | | 1.5 | 335 | 1.5 | 200 | MHz | | f _{CLOCK1} | Clock1 PLL output frequency for internal use | | 20 | 335 | 20 | 200 | MHz | | f _{CLOCK0_EXT} | Output clock frequency for | 3.3-V LVTTL | 1.5 | 245 | 1.5 | 226 | MHz | | | external clock0 output | 2.5-V LVTTL | 1.5 | 234 | 1.5 | 221 | MHz | | | | 1.8-V LVTTL | 1.5 | 223 | 1.5 | 216 | MHz | | | | GTL+ | 1.5 | 205 | 1.5 | 193 | MHz | | | | SSTL-2 Class | 1.5 | 158 | 1.5 | 157 | MHz | | | | SSTL-2 Class | 1.5 | 142 | 1.5 | 142 | MHz | | | | SSTL-3 Class | 1.5 | 166 | 1.5 | 162 | MHz | | | | SSTL-3 Class | 1.5 | 149 | 1.5 | 146 | MHz | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | f _{CLOCK1_EXT} | Output clock frequency for external clock1 output | 3.3-V LVTTL | 20 | 245 | 20 | 226 | MHz | | | | 2.5-V LVTTL | 20 | 234 | 20 | 221 | MHz | | | | 1.8-V LVTTL | 20 | 223 | 20 | 216 | MHz | | | | GTL+ | 20 | 205 | 20 | 193 | MHz | | | | SSTL-2 Class
I | 20 | 158 | 20 | 157 | MHz | | | | SSTL-2 Class | 20 | 142 | 20 | 142 | MHz | | | | SSTL-3 Class | 20 | 166 | 20 | 162 | MHz | | | | SSTL-3 Class | 20 | 149 | 20 | 146 | MHz | | | | LVDS | 20 | 420 | 20 | 350 | MHz | All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength. Figure 36 shows the f_{MAX} timing model for APEX 20K devices. Figure 37 shows the f_{MAX} timing model for APEX 20KE devices. These parameters can be used to estimate f_{MAX} for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information. | Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2) | | | | |---|--|---|--| | Symbol | Parameter | | | | t _{ESBDATACO2} | ESB clock-to-output delay without output registers | | | | t _{ESBDD} | ESB data-in to data-out delay for RAM mode | | | | t _{PD} | ESB macrocell input to non-registered output | - | | | t _{PTERMSU} | ESB macrocell register setup time before clock | | | | t _{PTERMCO} | ESB macrocell register clock-to-output delay | - | | | t _{F1-4} | Fanout delay using local interconnect | Fanout delay using local interconnect | | | t _{F5-20} | Fanout delay using MegaLab Interconnect | Fanout delay using MegaLab Interconnect | | | t _{F20+} | Fanout delay using FastTrack Interconnect | Fanout delay using FastTrack Interconnect | | | t _{CH} | Minimum clock high time from clock pin | | | | t _{CL} | Minimum clock low time from clock pin | Minimum clock low time from clock pin | | | t _{CLRP} | LE clear pulse width | | | | t _{PREP} | LE preset pulse width | LE preset pulse width | | | t _{ESBCH} | Clock high time | | | | t _{ESBCL} | Clock low time | | | | t _{ESBWP} | Write pulse width | | | | t _{ESBRP} | Read pulse width | | | Tables 32 and 33 describe APEX 20K external timing parameters. | Table 32. APEX 20K External Timing Parameters Note (1) | | | |--|---|--| | Symbol | Clock Parameter | | | t _{INSU} | Setup time with global clock at IOE register | | | t _{INH} | Hold time with global clock at IOE register | | | tоитсо | Clock-to-output delay with global clock at IOE register | | | Table 33. APEX 20K External Bidirectional Timing Parameters Note (1) | | | | |--|--|------------|--| | Symbol | Parameter | Conditions | | | t _{INSUBIDIR} | Setup time for bidirectional pins with global clock at same-row or same-column LE register | | | | t _{INHBIDIR} | Hold time for bidirectional pins with global clock at same-row or same-column LE register | | | | ^t OUTCOBIDIR | Clock-to-output delay for bidirectional pins with global clock at IOE register | C1 = 10 pF | | | t _{XZBIDIR} | Synchronous IOE output buffer disable delay | C1 = 10 pF | | | t _{ZXBIDIR} | Synchronous IOE output buffer enable delay, slow slew rate = off | C1 = 10 pF | | | Table 36. APEX 20KE Routing Timing Microparameters Note (1) | | | |---|--|--| | Symbol | Symbol Parameter | | | t _{F1-4} | Fanout delay using Local Interconnect | | | t _{F5-20} | Fanout delay estimate using MegaLab Interconnect | | | t _{F20+} | Fanout delay estimate using FastTrack Interconnect | | #### Note to Table 36: (1) These parameters are worst-case values for typical applications. Post-compilation timing simulation and timing analysis are required to determine actual worst-case performance. | Table 37. APEX 20KE Functional Timing Microparameters | | | |---|--|--| | Symbol | Parameter | | | TCH | Minimum clock high time from clock pin | | | TCL | Minimum clock low time from clock pin | | | TCLRP | LE clear Pulse Width | | | TPREP | LE preset pulse width | | | TESBCH | Clock high time for ESB | | | TESBCL | Clock low time for ESB | | | TESBWP | Write pulse width | | | TESBRP | Read pulse width | | Tables 38 and 39 describe the APEX 20KE external timing parameters. | Table 38. APEX 20KE External Timing Parameters Note (1) | | | | | | | |---|--|------------|--|--|--|--| | Symbol | Clock Parameter Conditi | | | | | | | t _{INSU} | Setup time with global clock at IOE input register | | | | | | | t _{INH} | Hold time with global clock at IOE input register | | | | | | | t _{outco} | Clock-to-output delay with global clock at IOE output register C1 = 10 | | | | | | | t _{INSUPLL} | Setup time with PLL clock at IOE input register | | | | | | | t _{INHPLL} | Hold time with PLL clock at IOE input register | | | | | | | t _{OUTCOPLL} | Clock-to-output delay with PLL clock at IOE output register | C1 = 10 pF | | | | | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Units | | |-------------------------|----------------|-----|----------------|-----|----------------|-----|-------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | 0.5 | | 0.6 | | 0.8 | | ns | | | t _H | 0.7 | | 0.8 | | 1.0 | | ns | | | t _{CO} | | 0.3 | | 0.4 | | 0.5 | ns | | | t _{LUT} | | 0.8 | | 1.0 | | 1.3 | ns | | | t _{ESBRC} | | 1.7 | | 2.1 | | 2.4 | ns | | | t _{ESBWC} | | 5.7 | | 6.9 | | 8.1 | ns | | | t _{ESBWESU} | 3.3 | | 3.9 | | 4.6 | | ns | | | t _{ESBDATASU} | 2.2 | | 2.7 | | 3.1 | | ns | | | t _{ESBDATAH} | 0.6 | | 0.8 | | 0.9 | | ns | | | t _{ESBADDRSU} | 2.4 | | 2.9 | | 3.3 | | ns | | | t _{ESBDATACO1} | | 1.3 | | 1.6 | | 1.8 | ns | | | t _{ESBDATACO2} | | 2.6 | | 3.1 | | 3.6 | ns | | | t _{ESBDD} | | 2.5 | | 3.3 | | 3.6 | ns | | | t _{PD} | | 2.5 | | 3.0 | | 3.6 | ns | | | t _{PTERMSU} | 2.3 | | 2.7 | | 3.2 | | ns | | | t _{PTERMCO} | | 1.5 | | 1.8 | | 2.1 | ns | | | t _{F1-4} | | 0.5 | | 0.6 | | 0.7 | ns | | | t _{F5-20} | | 1.6 | | 1.7 | | 1.8 | ns | | | t _{F20+} | | 2.2 | | 2.2 | | 2.3 | ns | | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | | t_{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{CLRP} | 0.3 | | 0.4 | | 0.4 | | ns | | | t _{PREP} | 0.4 | | 0.5 | | 0.5 | | ns | | | t _{ESBCH} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{ESBCL} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{ESBWP} | 1.6 | | 1.9 | | 2.2 | | ns | | | t _{ESBRP} | 1.0 | | 1.3 | _ | 1.4 | | ns | | | Table 69. EP20K160E f _{MAX} Routing Delays | | | | | | | | | |---|----------|------|-----|------|-----|------|----|--| | Symbol | Symbol - | | | -2 | - | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | t _{F1-4} | | 0.25 | | 0.26 | | 0.28 | ns | | | t _{F5-20} | | 1.00 | | 1.18 | | 1.35 | ns | | | t _{F20+} | | 1.95 | | 2.19 | | 2.30 | ns | | | Symbol | - | -1 | | 2 | -3 | | Unit | |--------------------|------|-----|------|-----|------|-----|------| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{CLRP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{PREP} | 0.18 | | 0.19 | | 0.21 | | ns | | t _{ESBCH} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBCL} | 1.34 | | 1.43 | | 1.55 | | ns | | t _{ESBWP} | 1.15 | | 1.45 | | 1.73 | | ns | | t _{ESBRP} | 0.93 | | 1.15 | | 1.38 | | ns | | Symbol | - | -1 | | -2 | | -3 | | |----------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSU} | 2.23 | | 2.34 | | 2.47 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.07 | 2.00 | 5.59 | 2.00 | 6.13 | ns | | t _{INSUPLL} | 2.12 | | 2.07 | | = | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | = | | ns | | toutcople | 0.50 | 3.00 | 0.50 | 3.35 | - | - | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |-------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.79 | | 2.44 | | 3.25 | ns | | t _{ESBSRC} | | 2.40 | | 3.12 | | 4.01 | ns | | t _{ESBAWC} | | 3.41 | | 4.65 | | 6.20 | ns | | t _{ESBSWC} | | 3.68 | | 4.68 | | 5.93 | ns | | t _{ESBWASU} | 1.55 | | 2.12 | | 2.83 | | ns | | t _{ESBWAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWDSU} | 1.71 | | 2.33 | | 3.11 | | ns | | t _{ESBWDH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBRASU} | 1.72 | | 2.34 | | 3.13 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBWESU} | 1.63 | | 2.36 | | 3.28 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.07 | | 0.39 | | 0.80 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.27 | | 0.67 | | 1.17 | | ns | | t _{ESBRADDRSU} | 0.34 | | 0.75 | | 1.28 | | ns | | t _{ESBDATACO1} | | 1.03 | | 1.20 | | 1.40 | ns | | t _{ESBDATACO2} | | 2.33 | | 3.18 | | 4.24 | ns | | t _{ESBDD} | | 3.41 | | 4.65 | | 6.20 | ns | | t _{PD} | | 1.68 | | 2.29 | | 3.06 | ns | | t _{PTERMSU} | 0.96 | | 1.48 | | 2.14 | | ns | | t _{PTERMCO} | | 1.05 | | 1.22 | | 1.42 | ns | | Table 81. EP20K300E f _{MAX} Routing Delays | | | | | | | | | |---|-----|------|-----|------|-----|------|----|--| | Symbol | - | 1 | -2 | | - | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | t _{F1-4} | | 0.22 | | 0.24 | | 0.26 | ns | | | t _{F5-20} | | 1.33 | | 1.43 | | 1.58 | ns | | | t _{F20+} | | 3.63 | | 3.93 | | 4.35 | ns | | | Symbol | -1 Speed Grade | | -2 Spe | -2 Speed Grade | | d Grade | Unit | |-------------------------|----------------|------|--------|----------------|------|---------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.78 | | 2.02 | | 1.95 | ns | | t _{ESBSRC} | | 2.52 | | 2.91 | | 3.14 | ns | | t _{ESBAWC} | | 3.52 | | 4.11 | | 4.40 | ns | | t _{ESBSWC} | | 3.23 | | 3.84 | | 4.16 | ns | | t _{ESBWASU} | 0.62 | | 0.67 | | 0.61 | | ns | | t _{ESBWAH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBWDSU} | 0.77 | | 0.79 | | 0.81 | | ns | | t _{ESBWDH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBRASU} | 1.74 | | 1.92 | | 1.85 | | ns | | t _{ESBRAH} | 0.00 | | 0.01 | | 0.23 | | ns | | t _{ESBWESU} | 2.07 | | 2.28 | | 2.41 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.25 | | 0.27 | | 0.29 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.11 | | 0.04 | | 0.11 | | ns | | t _{ESBRADDRSU} | 0.14 | | 0.11 | | 0.16 | | ns | | t _{ESBDATACO1} | | 1.29 | | 1.50 | | 1.63 | ns | | t _{ESBDATACO2} | | 2.55 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.12 | | 3.57 | | 3.85 | ns | | t _{PD} | | 1.84 | | 2.13 | | 2.32 | ns | | t _{PTERMSU} | 1.08 | | 1.19 | | 1.32 | | ns | 1.53 1.66 ns 1.31 t_{PTERMCO} | Table 110. Selectable I/O Standard Output Delays | | | | | | | | | |--|----------------|-------|----------------|-------|----------------|-------|------|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | Min | Max | Min | Max | Min | Max | Min | | | LVCMOS | | 0.00 | | 0.00 | | 0.00 | ns | | | LVTTL | | 0.00 | | 0.00 | | 0.00 | ns | | | 2.5 V | | 0.00 | | 0.09 | | 0.10 | ns | | | 1.8 V | | 2.49 | | 2.98 | | 3.03 | ns | | | PCI | | -0.03 | | 0.17 | | 0.16 | ns | | | GTL+ | | 0.75 | | 0.75 | | 0.76 | ns | | | SSTL-3 Class I | | 1.39 | | 1.51 | | 1.50 | ns | | | SSTL-3 Class II | | 1.11 | | 1.23 | | 1.23 | ns | | | SSTL-2 Class I | | 1.35 | | 1.48 | | 1.47 | ns | | | SSTL-2 Class II | | 1.00 | | 1.12 | | 1.12 | ns | | | LVDS | | -0.48 | | -0.48 | | -0.48 | ns | | | CTT | | 0.00 | | 0.00 | | 0.00 | ns | | | AGP | | 0.00 | | 0.00 | | 0.00 | ns | | # Power Consumption To estimate device power consumption, use the interactive power calculator on the Altera web site at http://www.altera.com. # Configuration & Operation The APEX 20K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes. # **Operating Modes** The APEX architecture uses SRAM configuration elements that require configuration data to be loaded each time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. The I/O pins are tri-stated during power-up, and before and during configuration. Together, the configuration and initialization processes are called *command mode*; normal device operation is called *user mode*. Before and during device configuration, all I/O pins are pulled to $V_{\mbox{\scriptsize CCIO}}$ by a built-in weak pull-up resistor. SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files. ### **Configuration Schemes** The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up. Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 111. Data Sources for Configuration | | | | | | | |---|--|--|--|--|--|--| | Configuration Scheme | Data Source | | | | | | | Configuration device | EPC1, EPC2, EPC16 configuration devices | | | | | | | Passive serial (PS) | MasterBlaster or ByteBlasterMV download cable or serial data source | | | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | | | JTAG | MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File | | | | | | For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*) # **Device Pin-Outs** See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information ### Version 4.1 APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes: - t_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104. - Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.