Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 1152 | | Number of Logic Elements/Cells | 11520 | | Total RAM Bits | 147456 | | Number of I/O | 152 | | Number of Gates | 728000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 240-BFQFP Exposed Pad | | Supplier Device Package | 240-RQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k300erc240-2x | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. Additiona | Note (1) | | | | | | |-----------------------|-----------|-----------|-----------|-----------|------------|------------| | Feature | EP20K300E | EP20K400 | EP20K400E | EP20K600E | EP20K1000E | EP20K1500E | | Maximum system gates | 728,000 | 1,052,000 | 1,052,000 | 1,537,000 | 1,772,000 | 2,392,000 | | Typical gates | 300,000 | 400,000 | 400,000 | 600,000 | 1,000,000 | 1,500,000 | | LEs | 11,520 | 16,640 | 16,640 | 24,320 | 38,400 | 51,840 | | ESBs | 72 | 104 | 104 | 152 | 160 | 216 | | Maximum
RAM bits | 147,456 | 212,992 | 212,992 | 311,296 | 327,680 | 442,368 | | Maximum macrocells | 1,152 | 1,664 | 1,664 | 2,432 | 2,560 | 3,456 | | Maximum user I/O pins | 408 | 502 | 488 | 588 | 708 | 808 | #### Note to Tables 1 and 2: (1) The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates. # Additional Features - Designed for low-power operation - 1.8-V and 2.5-V supply voltage (see Table 3) - MultiVoltTM I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3) - ESB offering programmable power-saving mode | Feature | Device | | | | | |---|----------------------------------|--|--|--|--| | | EP20K100
EP20K200
EP20K400 | EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E | | | | | Internal supply voltage (V _{CCINT}) | 2.5 V | 1.8 V | | | | | MultiVolt I/O interface voltage levels (V _{CCIO}) | 2.5 V, 3.3 V, 5.0 V | 1.8 V, 2.5 V, 3.3 V, 5.0 V (1) | | | | Note to Table 3: (1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor. | Table 5. APEX 20K FineLine BGA Package Options & I/O Count Notes (1), (2) | | | | | | | | | |---|---------|---------|---------|----------------|-----------|--|--|--| | Device | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | | | | EP20K30E | 93 | 128 | | | | | | | | EP20K60E | 93 | 196 | | | | | | | | EP20K100 | | 252 | | | | | | | | EP20K100E | 93 | 246 | | | | | | | | EP20K160E | | | 316 | | | | | | | EP20K200 | | | 382 | | | | | | | EP20K200E | | | 376 | 376 | | | | | | EP20K300E | | | | 408 | | | | | | EP20K400 | | | | 502 <i>(3)</i> | | | | | | EP20K400E | | | | 488 (3) | | | | | | EP20K600E | | | | 508 (3) | 588 | | | | | EP20K1000E | | | | 508 (3) | 708 | | | | | EP20K1500E | | | | | 808 | | | | #### Notes to Tables 4 and 5: - (1) I/O counts include dedicated input and clock pins. - (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages. - (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information. | Table 6. APEX 20K QFP, BGA & PGA Package Sizes | | | | | | | | | | |--|--------------|-------------|-------------|-------------|-------------|-------------|--|--|--| | Feature | 144-Pin TQFP | 208-Pin QFP | 240-Pin QFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA | | | | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.27 | 1.27 | _ | | | | | Area (mm ²) | 484 | 924 | 1,218 | 1,225 | 2,025 | 3,906 | | | | | $\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 22 × 22 | 30.4 × 30.4 | 34.9 × 34.9 | 35 × 35 | 45 × 45 | 62.5 × 62.5 | | | | | Table 7. APEX 20K FineLine BGA Package Sizes | | | | | | | | | |--|---------|---------|---------|---------|-----------|--|--|--| | Feature | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | | | | Pitch (mm) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | Area (mm ²) | 169 | 361 | 529 | 729 | 1,089 | | | | | $Length \times Width \ (mm \times mm)$ | 13 × 13 | 19×19 | 23 × 23 | 27 × 27 | 33 × 33 | | | | | Feature | APEX 20K Devices | APEX 20KE Devices | |--------------------------------|---|--| | MultiCore system integration | Full support | Full support | | SignalTap logic analysis | Full support | Full support | | 32/64-Bit, 33-MHz PCI | Full compliance in -1, -2 speed grades | Full compliance in -1, -2 speed grades | | 32/64-Bit, 66-MHz PCI | - | Full compliance in -1 speed grade | | MultiVolt I/O | 2.5-V or 3.3-V V _{CCIO}
V _{CCIO} selected for device
Certain devices are 5.0-V tolerant | 1.8-V, 2.5-V, or 3.3-V V _{CCIO} V _{CCIO} selected block-by-block 5.0-V tolerant with use of external resistor | | ClockLock support | Clock delay reduction
2× and 4× clock multiplication | Clock delay reduction $m/(n \times v)$ or $m/(n \times k)$ clock multiplication Drive ClockLock output off-chip External clock feedback ClockShift LVDS support Up to four PLLs ClockShift, clock phase adjustment | | Dedicated clock and input pins | Six | Eight | | I/O standard support | 2.5-V, 3.3-V, 5.0-V I/O 3.3-V PCI Low-voltage complementary metal-oxide semiconductor (LVCMOS) Low-voltage transistor-to-transistor logic (LVTTL) | 1.8-V, 2.5-V, 3.3-V, 5.0-V I/O 2.5-V I/O 3.3-V PCI and PCI-X 3.3-V Advanced Graphics Port (AGP) Center tap terminated (CTT) GTL+ LVCMOS LVTTL True-LVDS and LVPECL data pins (in EP20K300E and larger devices) LVDS and LVPECL signaling (in all BGA and FineLine BGA devices) LVDS and LVPECL data pins up to 156 Mbps (in -1 speed grade devices) HSTL Class I PCI-X SSTL-2 Class I and II SSTL-3 Class I and II | | Memory support | Dual-port RAM
FIFO
RAM
ROM | CAM Dual-port RAM FIFO RAM ROM | #### LE Operating Modes The APEX 20K LE can operate in one of the following three modes: - Normal mode - Arithmetic mode - Counter mode Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes. The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes. The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. #### Clear & Preset Logic Control Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NoT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NoT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted. In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset. #### FastTrack Interconnect In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance. The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9. Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other. Row Interconnect MegaLAB Interconnect Column Interconnect Interconnect Figure 11. Driving the FastTrack Interconnect APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect. Figure 14. APEX 20K Macrocell For registered functions, each macrocell register can be programmed individually to implement D, T, JK, or SR operation with programmable clock control. The register can be bypassed for combinatorial operation. During design entry, the designer specifies the desired register type; the Quartus II software then selects the most efficient register operation for each registered function to optimize resource utilization. The Quartus II software or other synthesis tools can also select the most efficient register operation automatically when synthesizing HDL designs. Each programmable register can be clocked by one of two ESB-wide clocks. The ESB-wide clocks can be generated from device dedicated clock pins, global signals, or local interconnect. Each clock also has an associated clock enable, generated from the local interconnect. The clock and clock enable signals are related for a particular ESB; any macrocell using a clock also uses the associated clock enable. If both the rising and falling edges of a clock are used in an ESB, both ESB-wide clock signals are used. Figure 18. Deep Memory Block Implemented with Multiple ESBs The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19. Figure 19. APEX 20K ESB Implementing Dual-Port RAM For more information on APEX 20KE devices and CAM, see *Application Note 119 (Implementing High-Speed Search Applications with APEX CAM).* #### **Driving Signals to the ESB** ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic. Figure 24. ESB Control Signal Generation Note to Figure 24: (1) APEX 20KE devices have four dedicated clocks. An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device. #### Clock Phase & Delay Adjustment The APEX 20KE ClockShift feature allows the clock phase and delay to be adjusted. The clock phase can be adjusted by 90° steps. The clock delay can be adjusted to increase or decrease the clock delay by an arbitrary amount, up to one clock period. #### LVDS Support Two PLLs are designed to support the LVDS interface. When using LVDS, the I/O clock runs at a slower rate than the data transfer rate. Thus, PLLs are used to multiply the I/O clock internally to capture the LVDS data. For example, an I/O clock may run at 105 MHz to support 840 megabits per second (Mbps) LVDS data transfer. In this example, the PLL multiplies the incoming clock by eight to support the high-speed data transfer. You can use PLLs in EP20K400E and larger devices for high-speed LVDS interfacing. #### Lock Signals The APEX 20KE ClockLock circuitry supports individual LOCK signals. The LOCK signal drives high when the ClockLock circuit has locked onto the input clock. The LOCK signals are optional for each ClockLock circuit; when not used, they are I/O pins. #### ClockLock & ClockBoost Timing Parameters For the ClockLock and ClockBoost circuitry to function properly, the incoming clock must meet certain requirements. If these specifications are not met, the circuitry may not lock onto the incoming clock, which generates an erroneous clock within the device. The clock generated by the ClockLock and ClockBoost circuitry must also meet certain specifications. If the incoming clock meets these requirements during configuration, the APEX 20K ClockLock and ClockBoost circuitry will lock onto the clock during configuration. The circuit will be ready for use immediately after configuration. In APEX 20KE devices, the clock input standard is programmable, so the PLL cannot respond to the clock until the device is configured. The PLL locks onto the input clock as soon as configuration is complete. Figure 30 shows the incoming and generated clock specifications. For more information on ClockLock and ClockBoost circuitry, see *Application Note 115: Using the ClockLock and ClockBoost PLL Features in APEX Devices*. | Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices (Part 2 of 2) | | | | | | | | |---|--|-----|-----|------|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | t _{SKEW} | Skew delay between related ClockLock/ClockBoost-generated clocks | | 500 | ps | | | | | t _{JITTER} | Jitter on ClockLock/ClockBoost-generated clock (5) | | 200 | ps | | | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | | | | #### Notes to Table 15: - (1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz. - (2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock time is less than the configuration time. - (4) The jitter specification is measured under long-term observation. - (5) If the input clock stability is 100 ps, t_{JITTER} is 250 ps. Table 16 summarizes the APEX 20K ClockLock and ClockBoost parameters for -2 speed grade devices. | Symbol | Parameter | Min | Max | Unit | | |-----------------------|--|-----|------------|------|--| | f _{OUT} | Output frequency | 25 | 170 | MHz | | | f _{CLK1} | Input clock frequency (ClockBoost clock multiplication factor equals 1) | 25 | 170 | MHz | | | f _{CLK2} | Input clock frequency (ClockBoost clock multiplication factor equals 2) | 16 | 80 | MHz | | | f _{CLK4} | Input clock frequency (ClockBoost clock multiplication factor equals 4) | 10 | 34 | MHz | | | t _{OUTDUTY} | Duty cycle for ClockLock/ClockBoost-generated clock | 40 | 60 | % | | | f _{CLKDEV} | Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals one) (1) | | 25,000 (2) | PPM | | | t _R | Input rise time | | 5 | ns | | | t _F | Input fall time | | 5 | ns | | | t _{LOCK} | Time required for ClockLock/ ClockBoost to acquire lock (3) | | 10 | μѕ | | | t _{SKEW} | Skew delay between related ClockLock/ ClockBoost-generated clock | 500 | 500 | ps | | | t _{JITTER} | Jitter on ClockLock/ ClockBoost-generated clock (4) | | 200 | ps | | | t _{INCLKSTB} | Input clock stability (measured between adjacent clocks) | | 50 | ps | | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |-------------------|---|--|-----------------------------------|-----|-----------------------------------|------| | V _{IH} | High-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | 1.7, 0.5 × V _{CCIO} (10) | | 4.1 | V | | V _{IL} | Low-level LVTTL, CMOS, or 3.3-V
PCI input voltage | | -0.5 | | 0.8, 0.3 × V _{CCIO} (10) | V | | V _{OH} | 3.3-V high-level LVTTL output voltage | I _{OH} = -12 mA DC,
V _{CCIO} = 3.00 V (11) | 2.4 | | | V | | | 3.3-V high-level LVCMOS output voltage | $I_{OH} = -0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (11)$ | V _{CCIO} - 0.2 | | | V | | | 3.3-V high-level PCI output voltage | $I_{OH} = -0.5 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$
(11) | 0.9 × V _{CCIO} | | | V | | | 2.5-V high-level output voltage | I _{OH} = -0.1 mA DC,
V _{CCIO} = 2.30 V (11) | 2.1 | | | V | | | | $I_{OH} = -1 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 2.0 | | | V | | | | $I_{OH} = -2 \text{ mA DC},$
$V_{CCIO} = 2.30 \text{ V } (11)$ | 1.7 | | | V | | V _{OL} | 3.3-V low-level LVTTL output voltage | I_{OL} = 12 mA DC,
V_{CCIO} = 3.00 V (12) | | | 0.4 | V | | | 3.3-V low-level LVCMOS output voltage | $I_{OL} = 0.1 \text{ mA DC},$
$V_{CCIO} = 3.00 \text{ V } (12)$ | | | 0.2 | V | | | 3.3-V low-level PCI output voltage | I_{OL} = 1.5 mA DC,
V_{CCIO} = 3.00 to 3.60 V
(12) | | | 0.1 × V _{CCIO} | V | | | 2.5-V low-level output voltage | I _{OL} = 0.1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.2 | V | | | | I _{OL} = 1 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.4 | V | | | | I _{OL} = 2 mA DC,
V _{CCIO} = 2.30 V (12) | | | 0.7 | V | | I _I | Input pin leakage current | V _I = 4.1 to -0.5 V (13) | -10 | | 10 | μΑ | | I _{OZ} | Tri-stated I/O pin leakage current | $V_0 = 4.1 \text{ to } -0.5 \text{ V } (13)$ | -10 | | 10 | μΑ | | I _{CC0} | V _{CC} supply current (standby)
(All ESBs in power-down mode) | $V_{I} =$ ground, no load, no toggling inputs, -1 speed grade | | 10 | | mA | | | | V _I = ground, no load, no
toggling inputs,
-2, -3 speed grades | | 5 | | mA | | R _{CONF} | Value of I/O pin pull-up resistor | V _{CCIO} = 3.0 V (14) | 20 | | 50 | kΩ | | | before and during configuration | V _{CCIO} = 2.375 V (14) | 30 | | 80 | kΩ | | | | V _{CCIO} = 1.71 V (14) | 60 | | 150 | kΩ | #### Figure 39. ESB Synchronous Timing Waveforms #### **ESB Synchronous Read** #### ESB Synchronous Write (ESB Output Registers Used) Figure 40 shows the timing model for bidirectional I/O pin timing. | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Spee | d Grade | Units | | |-------------------------|----------------|-----|----------------|-----|---------|---------|-------|--| | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | 0.1 | | 0.3 | | 0.6 | | ns | | | t _H | 0.5 | | 0.8 | | 0.9 | | ns | | | t _{CO} | | 0.1 | | 0.4 | | 0.6 | ns | | | t _{LUT} | | 1.0 | | 1.2 | | 1.4 | ns | | | t _{ESBRC} | | 1.7 | | 2.1 | | 2.4 | ns | | | t _{ESBWC} | | 5.7 | | 6.9 | | 8.1 | ns | | | t _{ESBWESU} | 3.3 | | 3.9 | | 4.6 | | ns | | | t _{ESBDATASU} | 2.2 | | 2.7 | | 3.1 | | ns | | | t _{ESBDATAH} | 0.6 | | 0.8 | | 0.9 | | ns | | | t _{ESBADDRSU} | 2.4 | | 2.9 | | 3.3 | | ns | | | t _{ESBDATACO1} | | 1.3 | | 1.6 | | 1.8 | ns | | | t _{ESBDATACO2} | | 2.5 | | 3.1 | | 3.6 | ns | | | t _{ESBDD} | | 2.5 | | 3.3 | | 3.6 | ns | | | t _{PD} | | 2.5 | | 3.1 | | 3.6 | ns | | | t _{PTERMSU} | 1.7 | | 2.1 | | 2.4 | | ns | | | t _{PTERMCO} | | 1.0 | | 1.2 | | 1.4 | ns | | | t _{F1-4} | | 0.4 | | 0.5 | | 0.6 | ns | | | t _{F5-20} | | 2.6 | | 2.8 | | 2.9 | ns | | | t _{F20+} | | 3.7 | | 3.8 | | 3.9 | ns | | | t _{CH} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{CL} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{CLRP} | 0.5 | | 0.6 | | 0.8 | | ns | | | t _{PREP} | 0.5 | | 0.5 | | 0.5 | | ns | | | t _{ESBCH} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{ESBCL} | 2.0 | | 2.5 | | 3.0 | | ns | | | t _{ESBWP} | 1.5 | | 1.9 | | 2.2 | | ns | | | t _{ESBRP} | 1.0 | | 1.2 | | 1.4 | | ns | | Tables 43 through 48 show the I/O external and external bidirectional timing parameter values for EP20K100, EP20K200, and EP20K400 APEX 20K devices. #### Notes to Tables 43 through 48: - (1) This parameter is measured without using ClockLock or ClockBoost circuits. - (2) This parameter is measured using ClockLock or ClockBoost circuits. Tables 49 through 54 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K30E APEX 20KE devices. | Table 49. EP20K30E f _{MAX} LE Timing Microparameters | | | | | | | | | | | |---|------|------|------|------|------|------|------|--|--|--| | Symbol | _ | 1 | -2 | | -3 | | Unit | | | | | | Min | Max | Min | Max | Min | Max | | | | | | t _{SU} | 0.01 | | 0.02 | | 0.02 | | ns | | | | | t _H | 0.11 | | 0.16 | | 0.23 | | ns | | | | | t _{CO} | | 0.32 | | 0.45 | | 0.67 | ns | | | | | t _{LUT} | | 0.85 | | 1.20 | | 1.77 | ns | | | | | Symbol | -1 | | -2 | | -3 | | Unit | |-------------------------|-------|------|-------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{ESBARC} | | 1.65 | | 2.02 | | 2.11 | ns | | t _{ESBSRC} | | 2.21 | | 2.70 | | 3.11 | ns | | t _{ESBAWC} | | 3.04 | | 3.79 | | 4.42 | ns | | t _{ESBSWC} | | 2.81 | | 3.56 | | 4.10 | ns | | t _{ESBWASU} | 0.54 | | 0.66 | | 0.73 | | ns | | t _{ESBWAH} | 0.36 | | 0.45 | | 0.47 | | ns | | t _{ESBWDSU} | 0.68 | | 0.81 | | 0.94 | | ns | | t _{ESBWDH} | 0.36 | | 0.45 | | 0.47 | | ns | | t _{ESBRASU} | 1.58 | | 1.87 | | 2.06 | | ns | | t _{ESBRAH} | 0.00 | | 0.00 | | 0.01 | | ns | | t _{ESBWESU} | 1.41 | | 1.71 | | 2.00 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | -0.02 | | -0.03 | | 0.09 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.14 | | 0.17 | | 0.35 | | ns | | t _{ESBRADDRSU} | 0.21 | | 0.27 | | 0.43 | | ns | | t _{ESBDATACO1} | | 1.04 | | 1.30 | | 1.46 | ns | | t _{ESBDATACO2} | | 2.15 | | 2.70 | | 3.16 | ns | | t _{ESBDD} | | 2.69 | | 3.35 | | 3.97 | ns | | t _{PD} | | 1.55 | | 1.93 | _ | 2.29 | ns | | t _{PTERMSU} | 1.01 | | 1.23 | | 1.52 | | ns | | t _{PTERMCO} | | 1.06 | | 1.32 | | 1.04 | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |---------------------------|----------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.93 | | 3.23 | | 3.44 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.25 | 2.00 | 5.79 | 2.00 | 6.32 | ns | | t _{XZBIDIR} | | 5.95 | | 6.77 | | 7.12 | ns | | tzxbidir | | 5.95 | | 6.77 | | 7.12 | ns | | t _{INSUBIDIRPLL} | 4.31 | | 4.76 | | - | | ns | | tinhbidirpll | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 2.25 | 0.50 | 2.45 | - | - | ns | | txzbidirpll | | 2.94 | | 3.43 | | - | ns | | tzxbidirpll | | 2.94 | | 3.43 | | - | ns | Tables 91 through 96 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K600E APEX 20KE devices. | Table 91. EP20K600E f _{MAX} LE Timing Microparameters | | | | | | | | |--|----------------|------|----------------|------|----------------|------|------| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.16 | | 0.16 | | 0.17 | | ns | | t _H | 0.29 | | 0.33 | | 0.37 | | ns | | t _{CO} | | 0.65 | | 0.38 | | 0.49 | ns | | t _{LUT} | | 0.70 | | 1.00 | | 1.30 | ns | | - | -1 Speed | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | |--------------------|----------|----------------|------|----------------|------|----------------|----| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{CLRP} | 0.18 | | 0.26 | | 0.34 | | ns | | t _{PREP} | 0.18 | | 0.26 | | 0.34 | | ns | | t _{ESBCH} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBCL} | 2.00 | | 2.50 | | 2.75 | | ns | | t _{ESBWP} | 1.17 | | 1.68 | | 2.18 | | ns | | t _{ESBRP} | 0.95 | | 1.35 | | 1.76 | | ns | | Symbol | ıbol -1 Speed G | | Grade -2 Speed Grade | | -3 Speed Grade | | Unit | |----------------------|-----------------|------|----------------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.74 | | 2.74 | | 2.87 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.51 | 2.00 | 6.06 | 2.00 | 6.61 | ns | | t _{INSUPLL} | 1.86 | | 1.96 | | - | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | toutcople | 0.50 | 2.62 | 0.50 | 2.91 | - | - | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |---------------------------|----------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 0.64 | | 0.98 | | 1.08 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | toutcobidir | 2.00 | 5.51 | 2.00 | 6.06 | 2.00 | 6.61 | ns | | t _{XZBIDIR} | | 6.10 | | 6.74 | | 7.10 | ns | | t _{ZXBIDIR} | | 6.10 | | 6.74 | | 7.10 | ns | | t _{INSUBIDIRPLL} | 2.26 | | 2.68 | | = | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | = | | ns | | toutcobidirpll | 0.50 | 2.62 | 0.50 | 2.91 | = | - | ns | | ^t xzbidirpll | | 3.21 | | 3.59 | | - | ns | | tzxbidirpll | | 3.21 | | 3.59 | | - | ns | SRAM configuration elements allow APEX 20K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, reinitializing the device, and resuming usermode operation. In-field upgrades can be performed by distributing new configuration files. #### **Configuration Schemes** The configuration data for an APEX 20K device can be loaded with one of five configuration schemes (see Table 111), chosen on the basis of the target application. An EPC2 or EPC16 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an APEX 20K device. When a configuration device is used, the system can configure automatically at system power-up. Multiple APEX 20K devices can be configured in any of five configuration schemes by connecting the configuration enable (nCE) and configuration enable output (nCEO) pins on each device. | Table 111. Data Sources for Configuration | | | | | | | |---|--|--|--|--|--|--| | Configuration Scheme | Data Source | | | | | | | Configuration device | EPC1, EPC2, EPC16 configuration devices | | | | | | | Passive serial (PS) | MasterBlaster or ByteBlasterMV download cable or serial data source | | | | | | | Passive parallel asynchronous (PPA) | Parallel data source | | | | | | | Passive parallel synchronous (PPS) | Parallel data source | | | | | | | JTAG | MasterBlaster or ByteBlasterMV download cable or a microprocessor with a Jam or JBC File | | | | | | For more information on configuration, see *Application Note* 116 (*Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.*) ### **Device Pin-Outs** See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin-out information ## Revision History The information contained in the *APEX 20K Programmable Logic Device Family Data Sheet* version 5.1 supersedes information published in previous versions. #### Version 5.1 APEX 20K Programmable Logic Device Family Data Sheet version 5.1 contains the following changes: - In version 5.0, the VI input voltage spec was updated in Table 28 on page 63. - In version 5.0, *Note* (5) to Tables 27 through 30 was revised. - Added Note (2) to Figure 21 on page 33. #### Version 5.0 APEX 20K Programmable Logic Device Family Data Sheet version 5.0 contains the following changes: - Updated Tables 23 through 26. Removed 2.5-V operating condition tables because all APEX 20K devices are now 5.0-V tolerant. - Updated conditions in Tables 33, 38 and 39. - Updated data for t_{ESBDATAH} parameter. #### Version 4.3 APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains the following changes: - Updated Figure 20. - Updated *Note* (2) to Table 13. - Updated notes to Tables 27 through 30. #### Version 4.2 APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains the following changes: - Updated Figure 29. - Updated *Note* (1) to Figure 29.