E·XFL

Intel - EP20K30EFC144-1X Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	120
Number of Logic Elements/Cells	1200
Total RAM Bits	24576
Number of I/O	93
Number of Gates	113000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-BGA
Supplier Device Package	144-FBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k30efc144-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2. Additiona	al APEX 20K De	vice Features	Note (1)			
Feature	EP20K300E	EP20K400	EP20K400E	EP20K600E	EP20K1000E	EP20K1500E
Maximum system gates	728,000	1,052,000	1,052,000	1,537,000	1,772,000	2,392,000
Typical gates	300,000	400,000	400,000	600,000	1,000,000	1,500,000
LEs	11,520	16,640	16,640	24,320	38,400	51,840
ESBs	72	104	104	152	160	216
Maximum RAM bits	147,456	212,992	212,992	311,296	327,680	442,368
Maximum macrocells	1,152	1,664	1,664	2,432	2,560	3,456
Maximum user I/O pins	408	502	488	588	708	808

Note to Tables 1 and 2:

 The embedded IEEE Std. 1149.1 Joint Test Action Group (JTAG) boundary-scan circuitry contributes up to 57,000 additional gates.

Additional Features

- Designed for low-power operation
 - 1.8-V and 2.5-V supply voltage (see Table 3)
 - MultiVolt[™] I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
 - ESB offering programmable power-saving mode

Table 3. APEX 20K Supply Voltages						
Feature	Device					
	EP20K100 EP20K200 EP20K400	EP20K30E EP20K60E EP20K100E EP20K160E EP20K200E EP20K300E EP20K400E EP20K600E EP20K1000E EP20K1500E				
Internal supply voltage (V _{CCINT})	2.5 V	1.8 V				
MultiVolt I/O interface voltage levels (V _{CCIO})	2.5 V, 3.3 V, 5.0 V	1.8 V, 2.5 V, 3.3 V, 5.0 V (1)				

Note to Table 3:

(1) APEX 20KE devices can be 5.0-V tolerant by using an external resistor.

All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required.

APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy.

After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations.

The Quartus II software provides NativeLink interfaces to other industrystandard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture.

LE Operating Modes

The APEX 20K LE can operate in one of the following three modes:

- Normal mode
- Arithmetic mode
- Counter mode

Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes. The counter mode uses two three-input LUTs: one generates the counter data, and the other generates the fast carry bit. A 2-to-1 multiplexer provides synchronous loading, and another AND gate provides synchronous clearing. If the cascade function is used by an LE in counter mode, the synchronous clear or load overrides any signal carried on the cascade chain. The synchronous clear overrides the synchronous load. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

Clear & Preset Logic Control

Logic for the register's clear and preset signals is controlled by LAB-wide signals. The LE directly supports an asynchronous clear function. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Moreover, the Quartus II software Compiler can use a programmable NOT-gate push-back technique to emulate simultaneous preset and clear or asynchronous load. However, this technique uses three additional LEs per register. All emulation is performed automatically when the design is compiled. Registers that emulate simultaneous preset and load will enter an unknown state upon power-up or when the chip-wide reset is asserted.

In addition to the two clear and preset modes, APEX 20K devices provide a chip-wide reset pin (DEV_CLRn) that resets all registers in the device. Use of this pin is controlled through an option in the Quartus II software that is set before compilation. The chip-wide reset overrides all other control signals. Registers using an asynchronous preset are preset when the chip-wide reset is asserted; this effect results from the inversion technique used to implement the asynchronous preset.

FastTrack Interconnect

In the APEX 20K architecture, connections between LEs, ESBs, and I/O pins are provided by the FastTrack Interconnect. The FastTrack Interconnect is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

The FastTrack Interconnect consists of row and column interconnect channels that span the entire device. The row interconnect routes signals throughout a row of MegaLAB structures; the column interconnect routes signals throughout a column of MegaLAB structures. When using the row and column interconnect, an LE, IOE, or ESB can drive any other LE, IOE, or ESB in a device. See Figure 9.

Figure 10. FastTrack Connection to Local Interconnect

Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all registers for inputs into the ESB: data input, WE, RE, read address, and write address. The other clock controls the ESB data output registers. The ESB also supports clock enable and asynchronous clear signals; these signals also control the reading and writing of registers independently. Input/output clock mode is commonly used for applications where the reads and writes occur at the same system frequency, but require different clock enable signals for the input and output registers. Figure 21 shows the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode

Notes to Figure 21:

All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset. (1)APEX 20KE devices have four dedicated clocks. (2)

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when simultaneous reads and writes are not required. See Figure 22.

Altera Corporation

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

APEX 20KE devices also support the MultiVolt I/O interface feature. The APEX 20KE VCCINT pins must always be connected to a 1.8-V power supply. With a 1.8-V V_{CCINT} level, input pins are 1.8-V, 2.5-V, and 3.3-V tolerant. The VCCIO pins can be connected to either a 1.8-V, 2.5-V, or 3.3-V power supply, depending on the I/O standard requirements. When the VCCIO pins are connected to a 1.8-V power supply, the output levels are compatible with 1.8-V systems. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output levels are sometime with 2.5-V systems. When VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and compatible with 3.3-V or 5.0-V systems. An APEX 20KE device is 5.0-V tolerant with the addition of a resistor.

Table 13 summarizes APEX 20KE MultiVolt I/O support.

Table 13. APEX 20KE MultiVolt I/O Support Note (1)								
V _{CCIO} (V)		Input Siç	jnals (V)			Output S	ignals (V)	
	1.8	2.5	3.3	5.0	1.8	2.5	3.3	5.0
1.8	\checkmark	\checkmark	\checkmark		\checkmark			
2.5	\checkmark	\checkmark	>			\checkmark		
3.3	\checkmark	\checkmark	\checkmark	(2)			✓(3)	

Notes to Table 13:

 The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}, except for the 5.0-V input case.

(2) An APEX 20KE device can be made 5.0-V tolerant with the addition of an external resistor. You also need a PCI clamp and series resistor.

(3) When V_{CCIO} = 3.3 V, an APEX 20KE device can drive a 2.5-V device with 3.3-V tolerant inputs.

ClockLock & ClockBoost Features

APEX 20K devices support the ClockLock and ClockBoost clock management features, which are implemented with PLLs. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost circuitry allows the designer to distribute a low-speed clock and multiply that clock on-device. APEX 20K devices include a high-speed clock tree; unlike ASICs, the user does not have to design and optimize the clock tree. The ClockLock and ClockBoost features work in conjunction with the APEX 20K device's high-speed clock to provide significant improvements in system performance and band-width. Devices with an X-suffix on the ordering code include the ClockLock circuit.

The ClockLock and ClockBoost features in APEX 20K devices are enabled through the Quartus II software. External devices are not required to use these features.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used.

Table 14. Multiplication Factor Combinations				
Clock 1	Clock 2			
×1	×1			
×1, ×2	×2			
×1, ×2, ×4	×4			

APEX 20KE ClockLock Feature

APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KE PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM.

Clock Multiplication

The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where *m* and *k* range from 2 to 160, and *n* and *v* range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

TAULE 21. 32-DIL AMEX ZUK DEVICE IDGUDE							
Device	IDCODE (32 Bits) (1)						
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	1 (1 Bit) (2)			
EP20K30E	0000	1000 0000 0011 0000	000 0110 1110	1			
EP20K60E	0000	1000 0000 0110 0000	000 0110 1110	1			
EP20K100	0000	0000 0100 0001 0110	000 0110 1110	1			
EP20K100E	0000	1000 0001 0000 0000	000 0110 1110	1			
EP20K160E	0000	1000 0001 0110 0000	000 0110 1110	1			
EP20K200	0000	0000 1000 0011 0010	000 0110 1110	1			
EP20K200E	0000	1000 0010 0000 0000	000 0110 1110	1			
EP20K300E	0000	1000 0011 0000 0000	000 0110 1110	1			
EP20K400	0000	0001 0110 0110 0100	000 0110 1110	1			
EP20K400E	0000	1000 0100 0000 0000	000 0110 1110	1			
EP20K600E	0000	1000 0110 0000 0000	000 0110 1110	1			
EP20K1000E	0000	1001 0000 0000 0000	000 0110 1110	1			

11- 04 00 04 4 ~

Notes to Table 21:

The most significant bit (MSB) is on the left. (1)

(2) The IDCODE's least significant bit (LSB) is always 1.

Figure 31 shows the timing requirements for the JTAG signals.

Altera Corporation

Table 25. APEX 20K 5.0-V Tolerant Device DC Operating Conditions (Part 2 of 2) Notes (2), (7), (8)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)			0.45	V	
	3.3-V low-level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V} (11)$			0.2	V	
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)			$0.1 imes V_{CCIO}$	V	
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (11)			0.2	V	
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (11)			0.4	V	
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (11)			0.7	V	
I _I	Input pin leakage current	$V_1 = 5.75$ to -0.5 V	-10		10	μA	
I _{OZ}	Tri-stated I/O pin leakage current	$V_{O} = 5.75$ to -0.5 V	-10		10	μA	
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V_1 = ground, no load, no toggling inputs, -1 speed grade (12)		10		mA	
		V ₁ = ground, no load, no toggling inputs, -2, -3 speed grades (12)		5		mA	
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (13)	20		50	W	
	before and during configuration	V _{CCIO} = 2.375 V (13)	30		80	W	

P

For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).*

Table 30. APEX 20KE Device Capacitance Note (15)						
Symbol	Parameter	Conditions	Min	Max	Unit	
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF	
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF	
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF	

Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin	Max. Duty Cycle
4.0V	100% (DC)
4.1	90%

- 4.2 50%
- 4.3 30%
- 4.4 17%
- 4.5 10%
- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (7) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between $\rm V_{CCIO}$ and $\rm V_{CCINT}$ for 3.3-V PCI compliance on APEX 20K devices.

Figure 39. ESB Synchronous Timing Waveforms

ESB Synchronous Write (ESB Output Registers Used)

Figure 40 shows the timing model for bidirectional I/O pin timing.

Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2)				
Symbol	Parameter			
t _{ESBDATACO2}	ESB clock-to-output delay without output registers			
t _{ESBDD}	ESB data-in to data-out delay for RAM mode			
t _{PD}	ESB macrocell input to non-registered output			
t _{PTERMSU}	ESB macrocell register setup time before clock			
t _{PTERMCO}	ESB macrocell register clock-to-output delay			
t _{F1-4}	Fanout delay using local interconnect			
t _{F5-20}	Fanout delay using MegaLab Interconnect			
t _{F20+}	Fanout delay using FastTrack Interconnect			
t _{CH}	Minimum clock high time from clock pin			
t _{CL}	Minimum clock low time from clock pin			
t _{CLRP}	LE clear pulse width			
t _{PREP}	LE preset pulse width			
t _{ESBCH}	Clock high time			
t _{ESBCL}	Clock low time			
t _{ESBWP}	Write pulse width			
t _{ESBRP}	Read pulse width			

Tables 32 and 33 describe APEX 20K external timing parameters.

Table 32. APEX 20K External Timing Parameters Note (1)					
Symbol	Clock Parameter				
t _{INSU}	Setup time with global clock at IOE register				
t _{INH}	Hold time with global clock at IOE register				
t _{оитсо}	Clock-to-output delay with global clock at IOE register				

Table 33. APEX 20K External Bidirectional Timing Parameters Note (1)					
Symbol	Parameter	Conditions			
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at same-row or same- column LE register				
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same-column LE register				
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 10 pF			
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 10 pF			
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate = off	C1 = 10 pF			

Table 43. EP20	Table 43. EP20K100 External Timing Parameters												
Symbol	-1 Spe	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade							
	Min	Мах	Min	Max	Min	Max							
t _{INSU} (1)	2.3		2.8		3.2		ns						
t _{INH} (1)	0.0		0.0		0.0		ns						
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns						
t _{INSU} (2)	1.1		1.2		-		ns						
t _{INH} (2)	0.0		0.0		-		ns						
t _{OUTCO} (2)	0.5	2.7	0.5	3.1	_	4.8	ns						

Table 44. EP20k	Table 44. EP20K100 External Bidirectional Timing Parameters											
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade						
	Min	Мах	Min	Max	Min	Max						
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns					
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns					
t _{OUTCOBIDIR}	2.0	4.5	2.0	4.9	2.0	6.6	ns					
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns					
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns					
t _{INSUBIDIR} (2)	1.0		1.2		-		ns					
t _{inhbidir} (2)	0.0		0.0		-		ns					
toutcobidir <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns					
t _{XZBIDIR} (2)		4.3		5.0		-	ns					
t _{ZXBIDIR} (2)		4.3		5.0		-	ns					

Table 45. EP20K200 External Timing Parameters											
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade					
	Min	Max	Min	Мах	Min	Мах					
t _{INSU} (1)	1.9		2.3		2.6		ns				
t _{INH} (1)	0.0		0.0		0.0		ns				
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns				
t _{INSU} (2)	1.1		1.2		-		ns				
t _{INH} (2)	0.0		0.0		-		ns				
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	-	ns				

Table 69. EP20K160E f _{MAX} Routing Delays										
Symbol		-1		-2	-3		Unit			
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.25		0.26		0.28	ns			
t _{F5-20}		1.00		1.18		1.35	ns			
t _{F20+}		1.95		2.19		2.30	ns			

Symbol	-	1	-	2	-3	1	Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	1.34		1.43		1.55		ns
t _{CL}	1.34		1.43		1.55		ns
t _{CLRP}	0.18		0.19		0.21		ns
t _{PREP}	0.18		0.19		0.21		ns
t _{ESBCH}	1.34		1.43		1.55		ns
t _{ESBCL}	1.34		1.43		1.55		ns
t _{ESBWP}	1.15		1.45		1.73		ns
t _{ESBRP}	0.93		1.15		1.38		ns

Table 71. EP2	Table 71. EP20K160E External Timing Parameters											
Symbol	Symbol -			-2	-3		Unit					
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.23		2.34		2.47		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	5.07	2.00	5.59	2.00	6.13	ns					
t _{insupll}	2.12		2.07		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	3.00	0.50	3.35	-	-	ns					

APEX 20K Programmable Logic Device Family Data Sheet

Table 87. EP20K400E f _{MAX} Routing Delays										
Symbol	Symbol -1 Speed Grade		-2 Spe	ed Grade	-3 Spee	d Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.25		0.25		0.26	ns			
t _{F5-20}		1.01		1.12		1.25	ns			
t _{F20+}		3.71		3.92		4.17	ns			

Symbol	-1 Spee	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.36		2.22		2.35		ns	
t _{CL}	1.36		2.26		2.35		ns	
t _{CLRP}	0.18		0.18		0.19		ns	
t _{PREP}	0.18		0.18		0.19		ns	
t _{ESBCH}	1.36		2.26		2.35		ns	
t _{ESBCL}	1.36		2.26		2.35		ns	
t _{ESBWP}	1.17		1.38		1.56		ns	
t _{ESBRP}	0.94		1.09		1.25		ns	

Table 89. EP2	Table 89. EP20K400E External Timing Parameters											
Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade						
	Min	Max	Min	Max	Min	Max						
t _{INSU}	2.51		2.64		2.77		ns					
t _{INH}	0.00		0.00		0.00		ns					
t _{outco}	2.00	5.25	2.00	5.79	2.00	6.32	ns					
t _{insupll}	3.221		3.38		-		ns					
t _{INHPLL}	0.00		0.00		-		ns					
t _{outcopll}	0.50	2.25	0.50	2.45	-	-	ns					

Г

Table 90. EP20K40	Table 90. EP20K400E External Bidirectional Timing Parameters											
Symbol	-1 Speed Grade		-2 Spee	d Grade	-3 Spee	Unit						
	Min	Max	Min	Max	Min	Max						
t _{insubidir}	2.93		3.23		3.44		ns					
t _{inhbidir}	0.00		0.00		0.00		ns					
t _{outcobidir}	2.00	5.25	2.00	5.79	2.00	6.32	ns					
t _{XZBIDIR}		5.95		6.77		7.12	ns					
t _{zxbidir}		5.95		6.77		7.12	ns					
t _{insubidirpll}	4.31		4.76		-		ns					
t _{inhbidirpll}	0.00		0.00		-		ns					
t _{outcobidirpll}	0.50	2.25	0.50	2.45	-	-	ns					
t _{xzbidirpll}		2.94		3.43		-	ns					
t _{ZXBIDIRPLL}		2.94		3.43		-	ns					

Tables 91 through 96 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K600E APEX 20KE devices.

Table 91. EP20K600E f _{MAX} LE Timing Microparameters											
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit				
	Min	Max	Min	Max	Min	Max					
t _{SU}	0.16		0.16		0.17		ns				
t _H	0.29		0.33		0.37		ns				
t _{CO}		0.65		0.38		0.49	ns				
t _{LUT}		0.70		1.00		1.30	ns				

Т

Table 94. EP20K600E Minimum Pulse Width Timing Parameters									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{CH}	2.00		2.50		2.75		ns		
t _{CL}	2.00		2.50		2.75		ns		
t _{CLRP}	0.18		0.26		0.34		ns		
t _{PREP}	0.18		0.26		0.34		ns		
t _{ESBCH}	2.00		2.50		2.75		ns		
t _{ESBCL}	2.00		2.50		2.75		ns		
t _{ESBWP}	1.17		1.68		2.18		ns		
t _{ESBRP}	0.95		1.35		1.76		ns		

Table 95. EP20K600E External Timing Parameters									
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit		
	Min	Max	Min	Max	Min	Max			
t _{INSU}	2.74		2.74		2.87		ns		
t _{INH}	0.00		0.00		0.00		ns		
t _{outco}	2.00	5.51	2.00	6.06	2.00	6.61	ns		
tINSUPLL	1.86		1.96		-		ns		
t _{INHPLL}	0.00		0.00		-		ns		
toutcopll	0.50	2.62	0.50	2.91	-	-	ns		

Table 96. EP20K600E External Bidirectional Timing Parameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Мах	Min	Max		
t _{insubidir}	0.64		0.98		1.08		ns	
t _{inhbidir}	0.00		0.00		0.00		ns	
t _{outcobidir}	2.00	5.51	2.00	6.06	2.00	6.61	ns	
t _{XZBIDIR}		6.10		6.74		7.10	ns	
t _{ZXBIDIR}		6.10		6.74		7.10	ns	
t _{insubidirpll}	2.26		2.68		-		ns	
t _{inhbidirpll}	0.00		0.00		-		ns	
t _{outcobidirpll}	0.50	2.62	0.50	2.91	-	-	ns	
t _{XZBIDIRPLL}		3.21		3.59		-	ns	
t _{ZXBIDIRPLL}		3.21		3.59		-	ns	

Table 98. EP20K1000E f _{MAX} ESB Timing Microparameters								
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit	
	Min	Max	Min	Max	Min	Max		
t _{ESBARC}		1.78		2.02		1.95	ns	
t _{ESBSRC}		2.52		2.91		3.14	ns	
t _{ESBAWC}		3.52		4.11		4.40	ns	
t _{ESBSWC}		3.23		3.84		4.16	ns	
t _{ESBWASU}	0.62		0.67		0.61		ns	
t _{ESBWAH}	0.41		0.55		0.55		ns	
t _{ESBWDSU}	0.77		0.79		0.81		ns	
t _{ESBWDH}	0.41		0.55		0.55		ns	
t _{ESBRASU}	1.74		1.92		1.85		ns	
t _{ESBRAH}	0.00		0.01		0.23		ns	
t _{ESBWESU}	2.07		2.28		2.41		ns	
t _{ESBWEH}	0.00		0.00		0.00		ns	
t _{ESBDATASU}	0.25		0.27		0.29		ns	
t _{ESBDATAH}	0.13		0.13		0.13		ns	
t _{ESBWADDRSU}	0.11		0.04		0.11		ns	
t _{ESBRADDRSU}	0.14		0.11		0.16		ns	
t _{ESBDATACO1}		1.29		1.50		1.63	ns	
t _{ESBDATACO2}		2.55		2.99		3.22	ns	
t _{ESBDD}		3.12		3.57		3.85	ns	
t _{PD}		1.84		2.13		2.32	ns	
t _{PTERMSU}	1.08		1.19		1.32		ns	
t _{PTERMCO}		1.31		1.53		1.66	ns	

Г

٦