Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|--| | Product Status | Obsolete | | Number of LABs/CLBs | 120 | | Number of Logic Elements/Cells | 1200 | | Total RAM Bits | 24576 | | Number of I/O | - | | Number of Gates | 113000 | | Voltage - Supply | 1.71V ~ 1.89V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 240-BFQFP | | Supplier Device Package | 240-PQFP (32x32) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep20k30eqc240-3 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong - Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations - Altera MegaCore® functions and Altera Megafunction Partners Program (AMPPSM) megafunctions - NativeLink™ integration with popular synthesis, simulation, and timing analysis tools - Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation - Supports popular revision-control software packages including PVCS, Revision Control System (RCS), and Source Code Control System (SCCS) | Device | 144-Pin
TQFP | 208-Pin
PQFP
RQFP | 240-Pin
PQFP
RQFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA | |------------|-----------------|-------------------------|-------------------------|-------------|-------------|-------------| | EP20K30E | 92 | 125 | | | | | | EP20K60E | 92 | 148 | 151 | 196 | | | | EP20K100 | 101 | 159 | 189 | 252 | | | | EP20K100E | 92 | 151 | 183 | 246 | | | | EP20K160E | 88 | 143 | 175 | 271 | | | | EP20K200 | | 144 | 174 | 277 | | | | EP20K200E | | 136 | 168 | 271 | 376 | | | EP20K300E | | | 152 | | 408 | | | EP20K400 | | | | | 502 | 502 | | EP20K400E | | | | | 488 | | | EP20K600E | | | | | 488 | | | EP20K1000E | | | | | 488 | | | EP20K1500E | | | | | 488 | | | Table 5. APEX 20K F | ineLine BGA Pack | age Options & I/C | O Count Note | s (1), (2) | | |---------------------|------------------|-------------------|--------------|----------------|-----------| | Device | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | EP20K30E | 93 | 128 | | | | | EP20K60E | 93 | 196 | | | | | EP20K100 | | 252 | | | | | EP20K100E | 93 | 246 | | | | | EP20K160E | | | 316 | | | | EP20K200 | | | 382 | | | | EP20K200E | | | 376 | 376 | | | EP20K300E | | | | 408 | | | EP20K400 | | | | 502 <i>(3)</i> | | | EP20K400E | | | | 488 (3) | | | EP20K600E | | | | 508 (3) | 588 | | EP20K1000E | | | | 508 (3) | 708 | | EP20K1500E | | | | | 808 | #### Notes to Tables 4 and 5: - (1) I/O counts include dedicated input and clock pins. - (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages. - (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information. | Table 6. APEX 20K QFP, BGA & PGA Package Sizes | | | | | | | | | | | | |--------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------|-------------|-------------|--|--|--|--|--| | Feature | 144-Pin TQFP | 208-Pin QFP | 240-Pin QFP | 356-Pin BGA | 652-Pin BGA | 655-Pin PGA | | | | | | | Pitch (mm) | 0.50 | 0.50 | 0.50 | 1.27 | 1.27 | _ | | | | | | | Area (mm ²) | 484 | 924 | 1,218 | 1,225 | 2,025 | 3,906 | | | | | | | $\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$ | 22 × 22 | 30.4 × 30.4 | 34.9 × 34.9 | 35 × 35 | 45 × 45 | 62.5 × 62.5 | | | | | | | Table 7. APEX 20K FineLine BGA Package Sizes | | | | | | | | | | | |----------------------------------------------|---------|---------|---------|---------|-----------|--|--|--|--|--| | Feature | 144 Pin | 324 Pin | 484 Pin | 672 Pin | 1,020 Pin | | | | | | | Pitch (mm) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | | | | | | | Area (mm ²) | 169 | 361 | 529 | 729 | 1,089 | | | | | | | $Length \times Width \ (mm \times mm)$ | 13 × 13 | 19×19 | 23 × 23 | 27 × 27 | 33 × 33 | | | | | | # Functional Description APEX 20K devices incorporate LUT-based logic, product-term-based logic, and memory into one device. Signal interconnections within APEX 20K devices (as well as to and from device pins) are provided by the FastTrack[®] Interconnect—a series of fast, continuous row and column channels that run the entire length and width of the device. Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect. Each IOE contains a bidirectional I/O buffer and a register that can be used as either an input or output register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 66-MHz PCI compliance; JTAG BST support; slew-rate control; and tri-state buffers. APEX 20KE devices offer enhanced I/O support, including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V AGP I/O standards. The ESB can implement a variety of memory functions, including CAM, RAM, dual-port RAM, ROM, and FIFO functions. Embedding the memory directly into the die improves performance and reduces die area compared to distributed-RAM implementations. Moreover, the abundance of cascadable ESBs ensures that the APEX 20K device can implement multiple wide memory blocks for high-density designs. The ESB's high speed ensures it can implement small memory blocks without any speed penalty. The abundance of ESBs ensures that designers can create as many different-sized memory blocks as the system requires. Figure 1 shows an overview of the APEX 20K device. Altera Corporation 9 Each LE has two outputs that drive the local, MegaLAB, or FastTrack Interconnect routing structure. Each output can be driven independently by the LUT's or register's output. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, improves device utilization because the register and the LUT can be used for unrelated functions. The LE can also drive out registered and unregistered versions of the LUT output. The APEX 20K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. A carry chain supports high-speed arithmetic functions such as counters and adders, while a cascade chain implements wide-input functions such as equality comparators with minimum delay. Carry and cascade chains connect LEs 1 through 10 in an LAB and all LABs in the same MegaLAB structure. ## Carry Chain The carry chain provides a very fast carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the APEX 20K architecture to implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry. Parameterized functions such as library of parameterized modules (LPM) and DesignWare functions automatically take advantage of carry chains for the appropriate functions. The Quartus II software Compiler creates carry chains longer than ten LEs by linking LABs together automatically. For enhanced fitting, a long carry chain skips alternate LABs in a MegaLABTM structure. A carry chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 6 shows how an n-bit full adder can be implemented in n+1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. The register can be bypassed for simple adders or used for accumulator functions. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carryin signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it is driven onto the local, MegaLAB, or FastTrack Interconnect routing structures. #### Normal Mode The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II software Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers. #### Arithmetic Mode The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output. The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used. #### Counter Mode The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs. Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other. Row Interconnect MegaLAB Interconnect Column Interconnect Interconnect Figure 11. Driving the FastTrack Interconnect APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect. Figure 13. Product-Term Logic in ESB Note to Figure 13: (1) APEX 20KE devices have four dedicated clocks. ## Macrocells APEX 20K macrocells can be configured individually for either sequential or combinatorial logic operation. The macrocell consists of three functional blocks: the logic array, the product-term select matrix, and the programmable register. Combinatorial logic is implemented in the product terms. The product-term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as parallel expanders to be used to increase the logic available to another macrocell. One product term can be inverted; the Quartus II software uses this feature to perform DeMorgan's inversion for more efficient implementation of wide OR functions. The Quartus II software Compiler can use a NOT-gate push-back technique to emulate an asynchronous preset. Figure 14 shows the APEX 20K macrocell. Figure 14. APEX 20K Macrocell For registered functions, each macrocell register can be programmed individually to implement D, T, JK, or SR operation with programmable clock control. The register can be bypassed for combinatorial operation. During design entry, the designer specifies the desired register type; the Quartus II software then selects the most efficient register operation for each registered function to optimize resource utilization. The Quartus II software or other synthesis tools can also select the most efficient register operation automatically when synthesizing HDL designs. Each programmable register can be clocked by one of two ESB-wide clocks. The ESB-wide clocks can be generated from device dedicated clock pins, global signals, or local interconnect. Each clock also has an associated clock enable, generated from the local interconnect. The clock and clock enable signals are related for a particular ESB; any macrocell using a clock also uses the associated clock enable. If both the rising and falling edges of a clock are used in an ESB, both ESB-wide clock signals are used. Figure 18. Deep Memory Block Implemented with Multiple ESBs The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19. Figure 19. APEX 20K ESB Implementing Dual-Port RAM Figure 22. ESB in Single-Port Mode Note (1) Notes to Figure 22: - (1) All registers can be asynchronously cleared by ESB local interconnect signals, global signals, or the chip-wide reset. - (2) APEX 20KE devices have four dedicated clocks. ## **Content-Addressable Memory** In APEX 20KE devices, the ESB can implement CAM. CAM can be thought of as the inverse of RAM. When read, RAM outputs the data for a given address. Conversely, CAM outputs an address for a given data word. For example, if the data FA12 is stored in address 14, the CAM outputs 14 when FA12 is driven into it. CAM is used for high-speed search operations. When searching for data within a RAM block, the search is performed serially. Thus, finding a particular data word can take many cycles. CAM searches all addresses in parallel and outputs the address storing a particular word. When a match is found, a match flag is set high. Figure 23 shows the CAM block diagram. For more information on APEX 20KE devices and CAM, see *Application Note 119 (Implementing High-Speed Search Applications with APEX CAM).* ## **Driving Signals to the ESB** ESBs provide flexible options for driving control signals. Different clocks can be used for the ESB inputs and outputs. Registers can be inserted independently on the data input, data output, read address, write address, WE, and RE signals. The global signals and the local interconnect can drive the WE and RE signals. The global signals, dedicated clock pins, and local interconnect can drive the ESB clock signals. Because the LEs drive the local interconnect, the LEs can control the WE and RE signals and the ESB clock, clock enable, and asynchronous clear signals. Figure 24 shows the ESB control signal generation logic. Figure 24. ESB Control Signal Generation Note to Figure 24: (1) APEX 20KE devices have four dedicated clocks. An ESB is fed by the local interconnect, which is driven by adjacent LEs (for high-speed connection to the ESB) or the MegaLAB interconnect. The ESB can drive the local, MegaLAB, or FastTrack Interconnect routing structure to drive LEs and IOEs in the same MegaLAB structure or anywhere in the device. ## Implementing Logic in ROM In addition to implementing logic with product terms, the ESB can implement logic functions when it is programmed with a read-only pattern during configuration, creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results, rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of ESBs. The large capacity of ESBs enables designers to implement complex functions in one logic level without the routing delays associated with linked LEs or distributed RAM blocks. Parameterized functions such as LPM functions can take advantage of the ESB automatically. Further, the Quartus II software can implement portions of a design with ESBs where appropriate. ## **Programmable Speed/Power Control** APEX 20K ESBs offer a high-speed mode that supports very fast operation on an ESB-by-ESB basis. When high speed is not required, this feature can be turned off to reduce the ESB's power dissipation by up to 50%. ESBs that run at low power incur a nominal timing delay adder. This Turbo BitTM option is available for ESBs that implement product-term logic or memory functions. An ESB that is not used will be powered down so that it does not consume DC current. Designers can program each ESB in the APEX 20K device for either high-speed or low-power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths operate at reduced power. ## I/O Structure The APEX 20K IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data requiring fast setup times, or as an output register for data requiring fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. For fast bidirectional I/O timing, LE registers using local routing can improve setup times and OE timing. The Quartus II software Compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. Because the APEX 20K IOE offers one output enable per pin, the Quartus II software Compiler can emulate open-drain operation efficiently. The APEX 20K IOE includes programmable delays that can be activated to ensure zero hold times, minimum clock-to-output times, input IOE register-to-core register transfers, or core-to-output IOE register transfers. A path in which a pin directly drives a register may require the delay to ensure zero hold time, whereas a path in which a pin drives a register through combinatorial logic may not require the delay. | Table 18. | Table 18. APEX 20KE Clock Input & Output Parameters (Part 2 of 2) Note (1) | | | | | | | | | | |-----------------|----------------------------------------------------------------------------|--------------|-----------------|-----|-----------------|-----|-------|--|--|--| | Symbol | Parameter | I/O Standard | -1X Speed Grade | | -2X Speed Grade | | Units | | | | | | | | Min | Max | Min | Max | | | | | | f _{IN} | Input clock frequency | 3.3-V LVTTL | 1.5 | 290 | 1.5 | 257 | MHz | | | | | | | 2.5-V LVTTL | 1.5 | 281 | 1.5 | 250 | MHz | | | | | | | 1.8-V LVTTL | 1.5 | 272 | 1.5 | 243 | MHz | | | | | | | GTL+ | 1.5 | 303 | 1.5 | 261 | MHz | | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | | SSTL-2 Class | 1.5 | 291 | 1.5 | 253 | MHz | | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | | SSTL-3 Class | 1.5 | 300 | 1.5 | 260 | MHz | | | | | | | LVDS | 1.5 | 420 | 1.5 | 350 | MHz | | | | #### Notes to Tables 17 and 18: - All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications are not met, creating an erroneous clock within the device. - (2) The maximum lock time is 40 µs or 2000 input clock cycles, whichever occurs first. - (3) Before configuration, the PLL circuits are disable and powered down. During configuration, the PLLs are still disabled. The PLLs begin to lock once the device is in the user mode. If the clock enable feature is used, lock begins once the CLKLK ENA pin goes high in user mode. - (4) The PLL VCO operating range is 200 MHz ð f_{VCO} ð 840 MHz for LVDS mode. # SignalTap Embedded Logic Analyzer APEX 20K devices include device enhancements to support the SignalTap embedded logic analyzer. By including this circuitry, the APEX 20K device provides the ability to monitor design operation over a period of time through the IEEE Std. 1149.1 (JTAG) circuitry; a designer can analyze internal logic at speed without bringing internal signals to the I/O pins. This feature is particularly important for advanced packages such as FineLine BGA packages because adding a connection to a pin during the debugging process can be difficult after a board is designed and manufactured. Figure 33. Relationship between V_{CCIO} & V_{CCINT} for 3.3-V PCI Compliance Figure 34 shows the typical output drive characteristics of APEX 20K devices with 3.3-V and 2.5-V $V_{\rm CCIO}$. The output driver is compatible with the 3.3-V *PCI Local Bus Specification, Revision 2.2* (when VCCIO pins are connected to 3.3 V). 5-V tolerant APEX 20K devices in the -1 speed grade are 5-V PCI compliant over all operating conditions. Figure 34. Output Drive Characteristics of APEX 20K Device Note (1) Note to Figure 34: (1) These are transient (AC) currents. Note to Tables 32 and 33: (1) These timing parameters are sample-tested only. Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional timing microparameters for the f_{MAX} timing model. | Table 34. APEX 20KE LE Timing Microparameters | | | | | | | | |-----------------------------------------------|-------------------------------------|--|--|--|--|--|--| | Symbol | Parameter | | | | | | | | t _{SU} | LE register setup time before clock | | | | | | | | t _H | LE register hold time after clock | | | | | | | | t _{CO} | LE register clock-to-output delay | | | | | | | | t _{LUT} | LUT delay for data-in to data-out | | | | | | | | Symbol | Parameter | |-------------------------|----------------------------------------------------------------------| | t _{ESBARC} | ESB Asynchronous read cycle time | | t _{ESBSRC} | ESB Synchronous read cycle time | | t _{ESBAWC} | ESB Asynchronous write cycle time | | t _{ESBSWC} | ESB Synchronous write cycle time | | t _{ESBWASU} | ESB write address setup time with respect to WE | | t _{ESBWAH} | ESB write address hold time with respect to WE | | t _{ESBWDSU} | ESB data setup time with respect to WE | | t _{ESBWDH} | ESB data hold time with respect to WE | | t _{ESBRASU} | ESB read address setup time with respect to RE | | t _{ESBRAH} | ESB read address hold time with respect to RE | | t _{ESBWESU} | ESB WE setup time before clock when using input register | | t _{ESBWEH} | ESB WE hold time after clock when using input register | | t _{ESBDATASU} | ESB data setup time before clock when using input register | | t _{ESBDATAH} | ESB data hold time after clock when using input register | | t _{ESBWADDRSU} | ESB write address setup time before clock when using input registers | | t _{ESBRADDRSU} | ESB read address setup time before clock when using input registers | | t _{ESBDATACO1} | ESB clock-to-output delay when using output registers | | t _{ESBDATACO2} | ESB clock-to-output delay without output registers | | t _{ESBDD} | ESB data-in to data-out delay for RAM mode | | t _{PD} | ESB Macrocell input to non-registered output | | t _{PTERMSU} | ESB Macrocell register setup time before clock | | t _{PTERMCO} | ESB Macrocell register clock-to-output delay | Tables 55 through 60 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K60E APEX 20KE devices. | Symbol | -1 | | -2 | | - | Unit | | |------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{SU} | 0.17 | | 0.15 | | 0.16 | | ns | | t _H | 0.32 | | 0.33 | | 0.39 | | ns | | t _{CO} | | 0.29 | | 0.40 | | 0.60 | ns | | t _{LUT} | | 0.77 | | 1.07 | | 1.59 | ns | | Symbol | -1 | | - | 2 | - | Unit | | |----------------------------|------|------|------|------|------|------|----| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.77 | | 2.91 | | 3.11 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 4.84 | 2.00 | 5.31 | 2.00 | 5.81 | ns | | t _{XZBIDIR} | | 6.47 | | 7.44 | | 8.65 | ns | | t _{ZXBIDIR} | | 6.47 | | 7.44 | | 8.65 | ns | | t _{INSUBIDIRPLL} | 3.44 | | 3.24 | | - | | ns | | tinhbidirpll | 0.00 | | 0.00 | | - | | ns | | ^t OUTCOBIDIRPLL | 0.50 | 3.37 | 0.50 | 3.69 | - | - | ns | | txzbidirpll | | 5.00 | | 5.82 | | - | ns | | tzxbidirpll | | 5.00 | | 5.82 | | - | ns | Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices. | Table 61. EP20K100E f _{MAX} LE Timing Microparameters | | | | | | | | | | | | |----------------------------------------------------------------|------|------|------|------|------|------|----|--|--|--|--| | Symbol | -1 | | -2 | | -1 | Unit | | | | | | | | Min | Max | Min | Max | Min | Max | 1 | | | | | | t _{SU} | 0.25 | | 0.25 | | 0.25 | | ns | | | | | | t _H | 0.25 | | 0.25 | | 0.25 | | ns | | | | | | t _{CO} | | 0.28 | | 0.28 | | 0.34 | ns | | | | | | t _{LUT} | | 0.80 | | 0.95 | | 1.13 | ns | | | | | | Symbol | -1 | | -2 | | -3 | Unit | | |--------------------|------|-----|------|-----|------|------|----| | | Min | Max | Min | Max | Min | Max | | | t _{CH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{CLRP} | 0.19 | | 0.26 | | 0.35 | | ns | | t _{PREP} | 0.19 | | 0.26 | | 0.35 | | ns | | t _{ESBCH} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBCL} | 1.25 | | 1.43 | | 1.67 | | ns | | t _{ESBWP} | 1.25 | | 1.71 | | 2.28 | | ns | | t _{ESBRP} | 1.01 | | 1.38 | | 1.84 | | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |----------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{INSU} | 2.31 | | 2.44 | | 2.57 | | ns | | t _{INH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCO} | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns | | t _{INSUPLL} | 1.76 | | 1.85 | | - | | ns | | t _{INHPLL} | 0.00 | | 0.00 | | - | | ns | | toutcople | 0.50 | 2.65 | 0.50 | 2.95 | _ | - | ns | | Symbol | -1 | | -2 | | -3 | | Unit | |---------------------------|------|------|------|------|------|------|------| | | Min | Max | Min | Max | Min | Max | 1 | | t _{INSUBIDIR} | 2.77 | | 2.85 | | 3.11 | | ns | | t _{INHBIDIR} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{OUTCOBIDIR} | 2.00 | 5.29 | 2.00 | 5.82 | 2.00 | 6.24 | ns | | t _{XZBIDIR} | | 7.59 | | 8.30 | | 9.09 | ns | | t _{ZXBIDIR} | | 7.59 | | 8.30 | | 9.09 | ns | | t _{INSUBIDIRPLL} | 2.50 | | 2.76 | | - | | ns | | t _{INHBIDIRPLL} | 0.00 | | 0.00 | | - | | ns | | toutcobidirpll | 0.50 | 2.65 | 0.50 | 2.95 | - | - | ns | | ^t xzbidirpll | | 5.00 | | 5.43 | | - | ns | | tzxbidirpll | | 5.00 | | 5.43 | | - | ns | | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | |-------------------------|----------------|------|----------------|------|----------------|------|------| | | Min | Max | Min | Max | Min | Max | | | t _{ESBARC} | | 1.78 | | 2.02 | | 1.95 | ns | | t _{ESBSRC} | | 2.52 | | 2.91 | | 3.14 | ns | | t _{ESBAWC} | | 3.52 | | 4.11 | | 4.40 | ns | | t _{ESBSWC} | | 3.23 | | 3.84 | | 4.16 | ns | | t _{ESBWASU} | 0.62 | | 0.67 | | 0.61 | | ns | | t _{ESBWAH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBWDSU} | 0.77 | | 0.79 | | 0.81 | | ns | | t _{ESBWDH} | 0.41 | | 0.55 | | 0.55 | | ns | | t _{ESBRASU} | 1.74 | | 1.92 | | 1.85 | | ns | | t _{ESBRAH} | 0.00 | | 0.01 | | 0.23 | | ns | | t _{ESBWESU} | 2.07 | | 2.28 | | 2.41 | | ns | | t _{ESBWEH} | 0.00 | | 0.00 | | 0.00 | | ns | | t _{ESBDATASU} | 0.25 | | 0.27 | | 0.29 | | ns | | t _{ESBDATAH} | 0.13 | | 0.13 | | 0.13 | | ns | | t _{ESBWADDRSU} | 0.11 | | 0.04 | | 0.11 | | ns | | t _{ESBRADDRSU} | 0.14 | | 0.11 | | 0.16 | | ns | | t _{ESBDATACO1} | | 1.29 | | 1.50 | | 1.63 | ns | | t _{ESBDATACO2} | | 2.55 | | 2.99 | | 3.22 | ns | | t _{ESBDD} | | 3.12 | | 3.57 | | 3.85 | ns | | t _{PD} | | 1.84 | | 2.13 | | 2.32 | ns | | t _{PTERMSU} | 1.08 | | 1.19 | | 1.32 | | ns | | t _{PTERMCO} | | 1.31 | | 1.53 | | 1.66 | ns | | Table 105. EP20K1500E f _{MAX} Routing Delays | | | | | | | | | | |-------------------------------------------------------|----------------|------|----------------|------|----------------|------|------|--|--| | Symbol | -1 Speed Grade | | -2 Speed Grade | | -3 Speed Grade | | Unit | | | | | Min | Max | Min | Max | Min | Max | | | | | t _{F1-4} | | 0.28 | | 0.28 | | 0.28 | ns | | | | t _{F5-20} | | 1.36 | | 1.50 | | 1.62 | ns | | | | t _{F20+} | | 4.43 | | 4.48 | | 5.07 | ns | | | ## Revision History The information contained in the *APEX 20K Programmable Logic Device Family Data Sheet* version 5.1 supersedes information published in previous versions. ### Version 5.1 APEX 20K Programmable Logic Device Family Data Sheet version 5.1 contains the following changes: - In version 5.0, the VI input voltage spec was updated in Table 28 on page 63. - In version 5.0, *Note* (5) to Tables 27 through 30 was revised. - Added Note (2) to Figure 21 on page 33. ### Version 5.0 APEX 20K Programmable Logic Device Family Data Sheet version 5.0 contains the following changes: - Updated Tables 23 through 26. Removed 2.5-V operating condition tables because all APEX 20K devices are now 5.0-V tolerant. - Updated conditions in Tables 33, 38 and 39. - Updated data for t_{ESBDATAH} parameter. ### Version 4.3 APEX 20K Programmable Logic Device Family Data Sheet version 4.3 contains the following changes: - Updated Figure 20. - Updated *Note* (2) to Table 13. - Updated notes to Tables 27 through 30. ### Version 4.2 APEX 20K Programmable Logic Device Family Data Sheet version 4.2 contains the following changes: - Updated Figure 29. - Updated *Note* (1) to Figure 29.