E·XFL

Intel - EP20K30ETC144-1X Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	120
Number of Logic Elements/Cells	1200
Total RAM Bits	24576
Number of I/O	92
Number of Gates	113000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k30etc144-1x

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

All APEX 20K devices are reconfigurable and are 100% tested prior to shipment. As a result, test vectors do not have to be generated for fault coverage purposes. Instead, the designer can focus on simulation and design verification. In addition, the designer does not need to manage inventories of different application-specific integrated circuit (ASIC) designs; APEX 20K devices can be configured on the board for the specific functionality required.

APEX 20K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and EPC16 configuration devices, which configure APEX 20K devices via a serial data stream. Moreover, APEX 20K devices contain an optimized interface that permits microprocessors to configure APEX 20K devices serially or in parallel, and synchronously or asynchronously. The interface also enables microprocessors to treat APEX 20K devices as memory and configure the device by writing to a virtual memory location, making reconfiguration easy.

After an APEX 20K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Real-time changes can be made during system operation, enabling innovative reconfigurable computing applications.

APEX 20K devices are supported by the Altera Quartus II development system, a single, integrated package that offers HDL and schematic design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, SignalTap logic analysis, and device configuration. The Quartus II software runs on Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations.

The Quartus II software provides NativeLink interfaces to other industrystandard PC- and UNIX workstation-based EDA tools. For example, designers can invoke the Quartus II software from within third-party design tools. Further, the Quartus II software contains built-in optimized synthesis libraries; synthesis tools can use these libraries to optimize designs for APEX 20K devices. For example, the Synopsys Design Compiler library, supplied with the Quartus II development system, includes DesignWare functions optimized for the APEX 20K architecture.

LE Operating Modes

The APEX 20K LE can operate in one of the following three modes:

- Normal mode
- Arithmetic mode
- Counter mode

Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes.

Normal Mode

The normal mode is suitable for general logic applications, combinatorial functions, or wide decoding functions that can take advantage of a cascade chain. In normal mode, four data inputs from the LAB local interconnect and the carry-in are inputs to a four-input LUT. The Quartus II software Compiler automatically selects the carry-in or the DATA3 signal as one of the inputs to the LUT. The LUT output can be combined with the cascade-in signal to form a cascade chain through the cascade-out signal. LEs in normal mode support packed registers.

Arithmetic Mode

The arithmetic mode is ideal for implementing adders, accumulators, and comparators. An LE in arithmetic mode uses two 3-input LUTs. One LUT computes a three-input function; the other generates a carry output. As shown in Figure 8, the first LUT uses the carry-in signal and two data inputs from the LAB local interconnect to generate a combinatorial or registered output. For example, when implementing an adder, this output is the sum of three signals: DATA1, DATA2, and carry-in. The second LUT uses the same three signals to generate a carry-out signal, thereby creating a carry chain. The arithmetic mode also supports simultaneous use of the cascade chain. LEs in arithmetic mode can drive out registered and unregistered versions of the LUT output.

The Quartus II software implements parameterized functions that use the arithmetic mode automatically where appropriate; the designer does not need to specify how the carry chain will be used.

Counter Mode

The counter mode offers clock enable, counter enable, synchronous up/down control, synchronous clear, and synchronous load options. The counter enable and synchronous up/down control signals are generated from the data inputs of the LAB local interconnect. The synchronous clear and synchronous load options are LAB-wide signals that affect all registers in the LAB. Consequently, if any of the LEs in an LAB use the counter mode, other LEs in that LAB must be used as part of the same counter or be used for a combinatorial function. The Quartus II software automatically places any registers that are not used by the counter into other LABs.

A row line can be driven directly by LEs, IOEs, or ESBs in that row. Further, a column line can drive a row line, allowing an LE, IOE, or ESB to drive elements in a different row via the column and row interconnect. The row interconnect drives the MegaLAB interconnect to drive LEs, IOEs, or ESBs in a particular MegaLAB structure.

A column line can be directly driven by LEs, IOEs, or ESBs in that column. A column line on a device's left or right edge can also be driven by row IOEs. The column line is used to route signals from one row to another. A column line can drive a row line; it can also drive the MegaLAB interconnect directly, allowing faster connections between rows.

Figure 10 shows how the FastTrack Interconnect uses the local interconnect to drive LEs within MegaLAB structures.

Figure 11 shows the intersection of a row and column interconnect, and how these forms of interconnects and LEs drive each other.

Figure 11. Driving the FastTrack Interconnect

APEX 20KE devices include an enhanced interconnect structure for faster routing of input signals with high fan-out. Column I/O pins can drive the FastRow[™] interconnect, which routes signals directly into the local interconnect without having to drive through the MegaLAB interconnect. FastRow lines traverse two MegaLAB structures. Also, these pins can drive the local interconnect directly for fast setup times. On EP20K300E and larger devices, the FastRow interconnect drives the two MegaLABs in the top left corner, the two MegaLABs in the top right corner, the two MegaLABS in the bottom left corner, and the two MegaLABs in the bottom right corner. On EP20K200E and smaller devices, FastRow interconnect drives the two MegaLABs on the top and the two MegaLABs on the bottom of the device. On all devices, the FastRow interconnect drives all local interconnect in the appropriate MegaLABs except the local interconnect on the side of the MegaLAB opposite the ESB. Pins using the FastRow interconnect achieve a faster set-up time, as the signal does not need to use a MegaLAB interconnect line to reach the destination LE. Figure 12 shows the FastRow interconnect.

Table 9. APEX 20K Routing Scheme									
Source					De	stination			
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect
Row I/O Pin					✓	~	~	~	
Column I/O Pin								~	✓ (1)
LE					~	~	~	~	
ESB					 Image: A set of the set of the	~	~	~	
Local Interconnect	~	~	~	~					
MegaLAB Interconnect					~				
Row FastTrack Interconnect						~		~	
Column FastTrack Interconnect						~	~		
FastRow Interconnect					✓ (1)				

Note to Table 9:

(1) This connection is supported in APEX 20KE devices only.

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

Figure 28 shows how a column IOE connects to the interconnect.

Figure 28. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed. Under hot socketing conditions, APEX 20KE devices will not sustain any damage, but the I/O pins will drive out.

MultiVolt I/O Interface

The APEX device architecture supports the MultiVolt I/O interface feature, which allows APEX devices in all packages to interface with systems of different supply voltages. The devices have one set of VCC pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The APEX 20K VCCINT pins must always be connected to a 2.5 V power supply. With a 2.5-V V_{CCINT} level, input pins are 2.5-V, 3.3-V, and 5.0-V tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power supply, depending on the output requirements. When VCCIO pins are connected to a 2.5-V power supply, the output levels are compatible with 2.5-V systems. When the VCCIO pins are connected to a 3.3-V power supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V systems.

Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support									
V _{CCIO} (V)	In	put Signals	(V)	Output Signals (V)					
	2.5	3.3	5.0	2.5	3.3	5.0			
2.5	\checkmark	√ (1)	✓(1)	~					
3.3	\checkmark	 Image: A set of the set of the	√ (1)	√ (2)	>	 Image: A set of the set of the			

Table 12 summarizes 5.0-V tolerant APEX 20K MultiVolt I/O support.

Notes to Table 12:

- The PCI clamping diode must be disabled to drive an input with voltages higher than V_{CCIO}.
- (2) When $V_{CCIO} = 3.3 \text{ V}$, an APEX 20K device can drive a 2.5-V device with 3.3-V tolerant inputs.

Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pullup resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a V_{IH} of 3.5 V. When the pin is inactive, the trace will be pulled up to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pullup resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor. For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used.

Table 14. Multiplication Factor Combinations						
Clock 1	Clock 2					
×1	×1					
×1, ×2	×2					
×1, ×2, ×4	×4					

APEX 20KE ClockLock Feature

APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KE PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM.

Clock Multiplication

The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where *m* and *k* range from 2 to 160, and *n* and *v* range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

Figure 32. APEX 20K AC Test Conditions Note (1)

Note to Figure 32:

Power supply transients can affect AC measurements. Simultaneous transitions of (1) multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-groundcurrent transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

Operating **Conditions**

Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices.

	.S. AFEA ZOK S.O-V TOIEIAIN L		5165 (1), (2)		
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage	With respect to ground (3)	-0.5	3.6	V
V _{CCIO}			-0.5	4.6	V
VI	DC input voltage		-2.0	5.75	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _{AMB}	Ambient temperature	Under bias	-65	135	°C
Τ _J	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	°C
		Ceramic PGA packages, under bias		150	°C

Table 23. APEX 20K 5.0-V Tolerant Device Absolute Maximum Ratings	Notes (1), (2)
---	----------------

P

For DC Operating Specifications on APEX 20KE I/O standards, please refer to *Application Note 117 (Using Selectable I/O Standards in Altera Devices).*

Table 30. APEX 20KE Device Capacitance Note (15)									
Symbol	Parameter	Conditions	Min	Max	Unit				
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF				
CINCLK	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF				
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF				

Notes to Tables 27 through 30:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) Numbers in parentheses are for industrial-temperature-range devices.
- (4) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (5) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to the voltage shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.

Vin	Max. Duty Cycle
4.0V	100% (DC)
4.1	90%

- 4.2 50%
- 4.3 30%
- 4.4 17%
- 4.5 10%
- (6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (7) Typical values are for $T_A = 25^\circ$ C, $V_{CCINT} = 1.8$ V, and $V_{CCIO} = 1.8$ V, 2.5 V or 3.3 V.
- (8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on page 60.
- (9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the V_{IH}, V_{IL}, V_{OH}, V_{OL}, and I_I parameters when VCCIO = 1.8 V.
- (10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, SSTL-2, SSTL-3, and HSTL.
- (11) The I_{OH} parameter refers to high-level TTL, PCI, or CMOS output current.
- (12) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (13) This value is specified for normal device operation. The value may vary during power-up.
- (14) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO}.
- (15) Capacitance is sample-tested only.

Figure 33 shows the relationship between $\rm V_{CCIO}$ and $\rm V_{CCINT}$ for 3.3-V PCI compliance on APEX 20K devices.

All specifications are always representative of worst-case supply voltage and junction temperature conditions. All output-pin-timing specifications are reported for maximum driver strength.

Figure 36 shows the f_{MAX} timing model for APEX 20K devices.

Figure 37 shows the f_{MAX} timing model for APEX 20KE devices. These parameters can be used to estimate f_{MAX} for multiple levels of logic. Quartus II software timing analysis should be used for more accurate timing information.

Tables 40 through 42 show the f_{MAX} timing parameters for EP20K100, EP20K200, and EP20K400 APEX 20K devices.

Symbol	-1 Sneed Grade		-2 Snee	d Grade	-3 Sner	ed Grade	Units
oymbol			2 0000		0 0000		
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.5		0.6		0.8		ns
t _H	0.7		0.8		1.0		ns
t _{CO}		0.3		0.4		0.5	ns
t _{LUT}		0.8		1.0		1.3	ns
t _{ESBRC}		1.7		2.1		2.4	ns
t _{ESBWC}		5.7		6.9		8.1	ns
t _{ESBWESU}	3.3		3.9		4.6		ns
t _{ESBDATASU}	2.2		2.7		3.1		ns
t _{ESBDATAH}	0.6		0.8		0.9		ns
t _{ESBADDRSU}	2.4		2.9		3.3		ns
t _{ESBDATACO1}		1.3		1.6		1.8	ns
t _{ESBDATACO2}		2.6		3.1		3.6	ns
t _{ESBDD}		2.5		3.3		3.6	ns
t _{PD}		2.5		3.0		3.6	ns
t _{PTERMSU}	2.3		2.6		3.2		ns
t _{PTERMCO}		1.5		1.8		2.1	ns
t _{F1-4}		0.5		0.6		0.7	ns
t _{F5-20}		1.6		1.7		1.8	ns
t _{F20+}		2.2		2.2		2.3	ns
t _{CH}	2.0		2.5		3.0		ns
t _{CL}	2.0		2.5		3.0		ns
t _{CLRP}	0.3		0.4		0.4		ns
t _{PREP}	0.5		0.5		0.5		ns
t _{ESBCH}	2.0		2.5		3.0		ns
t _{ESBCL}	2.0		2.5		3.0		ns
t _{ESBWP}	1.6		1.9		2.2		ns
t _{ESBRP}	1.0		1.3		1.4		ns

Table 57. EP20K60E f _{MAX} Routing Delays										
Symbol	-1		-2		-3		Unit			
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.24		0.26		0.30	ns			
t _{F5-20}		1.45		1.58		1.79	ns			
t _{F20+}		1.96		2.14		2.45	ns			

Table 58. EP20K60E Minimum Pulse Width Timing Parameters									
Symbol	-	1	-	-2		-3			
	Min	Max	Min	Max	Min	Max			
t _{CH}	2.00		2.50		2.75		ns		
t _{CL}	2.00		2.50		2.75		ns		
t _{CLRP}	0.20		0.28		0.41		ns		
t _{PREP}	0.20		0.28		0.41		ns		
t _{ESBCH}	2.00		2.50		2.75		ns		
t _{ESBCL}	2.00		2.50		2.75		ns		
t _{ESBWP}	1.29		1.80		2.66		ns		
t _{ESBRP}	1.04		1.45		2.14		ns		

Table 59. EP20K60E External Timing Parameters										
Symbol	-1			-2		-3				
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.03		2.12		2.23		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	4.84	2.00	5.31	2.00	5.81	ns			
tinsupll	1.12		1.15		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
t _{outcopll}	0.50	3.37	0.50	3.69	-	-	ns			

Table 60. EP20K60E External Bidirectional Timing Parameters										
Symbol	-1		-:	2	-3		Unit			
	Min	Max	Min	Max	Min	Max				
t _{insubidir}	2.77		2.91		3.11		ns			
t _{inhbidir}	0.00		0.00		0.00		ns			
t _{outcobidir}	2.00	4.84	2.00	5.31	2.00	5.81	ns			
t _{xzbidir}		6.47		7.44		8.65	ns			
t _{zxbidir}		6.47		7.44		8.65	ns			
t _{insubidirpll}	3.44		3.24		-		ns			
t _{inhbidirpll}	0.00		0.00		-		ns			
t _{outcobidirpll}	0.50	3.37	0.50	3.69	-	-	ns			
t _{xzbidirpll}		5.00		5.82		-	ns			
t _{ZXBIDIRPLL}		5.00		5.82		-	ns			

Tables 61 through 66 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K100E APEX 20KE devices.

Table 61. EP20K100E f _{MAX} LE Timing Microparameters										
Symbol	Symbol -1		-2 -3		-2 -3		3	Unit		
	Min	Max	Min	Max	Min	Max				
t _{SU}	0.25		0.25		0.25		ns			
t _H	0.25		0.25		0.25		ns			
t _{CO}		0.28		0.28		0.34	ns			
t _{LUT}		0.80		0.95		1.13	ns			

Table 68. EP20K160E f _{MAX} ESB Timing Microparameters									
Symbol	-1			-2		-3			
	Min	Max	Min	Max	Min	Max			
t _{ESBARC}		1.65		2.02		2.11	ns		
t _{ESBSRC}		2.21		2.70		3.11	ns		
t _{ESBAWC}		3.04		3.79		4.42	ns		
t _{ESBSWC}		2.81		3.56		4.10	ns		
t _{ESBWASU}	0.54		0.66		0.73		ns		
t _{ESBWAH}	0.36		0.45		0.47		ns		
t _{ESBWDSU}	0.68		0.81		0.94		ns		
t _{ESBWDH}	0.36		0.45		0.47		ns		
t _{ESBRASU}	1.58		1.87		2.06		ns		
t _{ESBRAH}	0.00		0.00		0.01		ns		
t _{ESBWESU}	1.41		1.71		2.00		ns		
t _{ESBWEH}	0.00		0.00		0.00		ns		
t _{ESBDATASU}	-0.02		-0.03		0.09		ns		
t _{ESBDATAH}	0.13		0.13		0.13		ns		
t _{ESBWADDRSU}	0.14		0.17		0.35		ns		
t _{ESBRADDRSU}	0.21		0.27		0.43		ns		
t _{ESBDATACO1}		1.04		1.30		1.46	ns		
t _{ESBDATACO2}		2.15		2.70		3.16	ns		
t _{ESBDD}		2.69		3.35		3.97	ns		
t _{PD}		1.55		1.93		2.29	ns		
t _{PTERMSU}	1.01		1.23		1.52		ns		
t _{PTERMCO}		1.06		1.32		1.04	ns		

Table 98. EP20K1000E f _{MAX} ESB Timing Microparameters										
Symbol	-1 Speed Grade		-2 Spe	ed Grade	-3 Spee	-3 Speed Grade				
	Min	Max	Min	Max	Min	Max				
t _{ESBARC}		1.78		2.02		1.95	ns			
t _{ESBSRC}		2.52		2.91		3.14	ns			
t _{ESBAWC}		3.52		4.11		4.40	ns			
t _{ESBSWC}		3.23		3.84		4.16	ns			
t _{ESBWASU}	0.62		0.67		0.61		ns			
t _{ESBWAH}	0.41		0.55		0.55		ns			
t _{ESBWDSU}	0.77		0.79		0.81		ns			
t _{ESBWDH}	0.41		0.55		0.55		ns			
t _{ESBRASU}	1.74		1.92		1.85		ns			
t _{ESBRAH}	0.00		0.01		0.23		ns			
t _{ESBWESU}	2.07		2.28		2.41		ns			
t _{ESBWEH}	0.00		0.00		0.00		ns			
t _{ESBDATASU}	0.25		0.27		0.29		ns			
t _{ESBDATAH}	0.13		0.13		0.13		ns			
t _{ESBWADDRSU}	0.11		0.04		0.11		ns			
t _{ESBRADDRSU}	0.14		0.11		0.16		ns			
t _{ESBDATACO1}		1.29		1.50		1.63	ns			
t _{ESBDATACO2}		2.55		2.99		3.22	ns			
t _{ESBDD}		3.12		3.57		3.85	ns			
t _{PD}		1.84		2.13		2.32	ns			
t _{PTERMSU}	1.08		1.19		1.32		ns			
t _{PTERMCO}		1.31		1.53		1.66	ns			

Г

٦

APEX 20K Programmable Logic Device Family Data Sheet

Table 99. EP20K1000E f _{MAX} Routing Delays										
Symbol	-1 Spe	ed Grade	-2 Spe	-2 Speed Grade -		-3 Speed Grade				
	Min	Max	Min	Max	Min	Max				
t _{F1-4}		0.27		0.27		0.27	ns			
t _{F5-20}		1.45		1.63		1.75	ns			
t _{F20+}		4.15		4.33		4.97	ns			

Table 100. EP20K1000E Minimum Pulse Width Timing Parameters										
Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Speed	Grade	Unit			
	Min	Max	Min	Max	Min	Max				
t _{CH}	1.25		1.43		1.67		ns			
t _{CL}	1.25		1.43		1.67		ns			
t _{CLRP}	0.20		0.20		0.20		ns			
t _{PREP}	0.20		0.20		0.20		ns			
t _{ESBCH}	1.25		1.43		1.67		ns			
t _{ESBCL}	1.25		1.43		1.67		ns			
t _{ESBWP}	1.28		1.51		1.65		ns			
t _{ESBRP}	1.11		1.29		1.41		ns			

Table 101. EP20K1000E External Timing Parameters										
Symbol	-1 Speed Grade		-2 Speed Grade		-3 Spee	-3 Speed Grade				
	Min	Max	Min	Max	Min	Max				
t _{INSU}	2.70		2.84		2.97		ns			
t _{INH}	0.00		0.00		0.00		ns			
t _{outco}	2.00	5.75	2.00	6.33	2.00	6.90	ns			
t _{INSUPLL}	1.64		2.09		-		ns			
t _{INHPLL}	0.00		0.00		-		ns			
t _{outcopll}	0.50	2.25	0.50	2.99	-	-	ns			

Version 4.1

APEX 20K Programmable Logic Device Family Data Sheet version 4.1 contains the following changes:

- *t*_{ESBWEH} added to Figure 37 and Tables 35, 50, 56, 62, 68, 74, 86, 92, 97, and 104.
- Updated EP20K300E device internal and external timing numbers in Tables 79 through 84.