

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	120
Number of Logic Elements/Cells	1200
Total RAM Bits	24576
Number of I/O	92
Number of Gates	113000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k30etc144-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Flexible clock management circuitry with up to four phase-locked loops (PLLs)
 - Built-in low-skew clock tree
 - Up to eight global clock signals
 - ClockLock[®] feature reducing clock delay and skew
 - ClockBoost[®] feature providing clock multiplication and division
 - ClockShift™ programmable clock phase and delay shifting

Powerful I/O features

- Compliant with peripheral component interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V operation at 33 or 66 MHz and 32 or 64 bits
- Support for high-speed external memories, including DDR SDRAM and ZBT SRAM (ZBT is a trademark of Integrated Device Technology, Inc.)
- Bidirectional I/O performance ($t_{CO} + t_{SU}$) up to 250 MHz
- LVDS performance up to 840 Mbits per channel
- Direct connection from I/O pins to local interconnect providing fast t_{CO} and t_{SU} times for complex logic
- MultiVolt I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
- Programmable clamp to V_{CCIO}
- Individual tri-state output enable control for each pin
- Programmable output slew-rate control to reduce switching noise
- Support for advanced I/O standards, including low-voltage differential signaling (LVDS), LVPECL, PCI-X, AGP, CTT, stubseries terminated logic (SSTL-3 and SSTL-2), Gunning transceiver logic plus (GTL+), and high-speed terminated logic (HSTL Class I)
- Pull-up on I/O pins before and during configuration

Advanced interconnect structure

- Four-level hierarchical FastTrack[®] Interconnect structure providing fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect

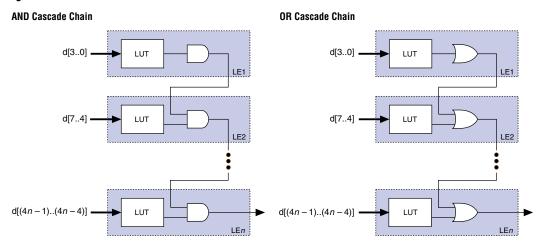
Advanced packaging options

- Available in a variety of packages with 144 to 1,020 pins (see Tables 4 through 7)
- FineLine BGA® packages maximize board space efficiency

Advanced software support

 Software design support and automatic place-and-route provided by the Altera® Quartus® II development system for

- Windows-based PCs, Sun SPARCstations, and HP 9000 Series 700/800 workstations
- Altera MegaCore® functions and Altera Megafunction Partners Program (AMPPSM) megafunctions
- NativeLinkTM integration with popular synthesis, simulation, and timing analysis tools
- Quartus II SignalTap[®] embedded logic analyzer simplifies in-system design evaluation by giving access to internal nodes during device operation
- Supports popular revision-control software packages including PVCS, Revision Control System (RCS), and Source Code Control System (SCCS)


Device	144-Pin TQFP	208-Pin PQFP RQFP	240-Pin PQFP RQFP	356-Pin BGA	652-Pin BGA	655-Pin PGA
EP20K30E	92	125				
EP20K60E	92	148	151	196		
EP20K100	101	159	189	252		
EP20K100E	92	151	183	246		
EP20K160E	88	143	175	271		
EP20K200		144	174	277		
EP20K200E		136	168	271	376	
EP20K300E			152		408	
EP20K400					502	502
EP20K400E					488	
EP20K600E					488	
EP20K1000E					488	
EP20K1500E					488	

Cascade Chain

With the cascade chain, the APEX 20K architecture can implement functions with a very wide fan-in. Adjacent LUTs can compute portions of a function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR (via De Morgan's inversion) to connect the outputs of adjacent LEs. Each additional LE provides four more inputs to the effective width of a function, with a short cascade delay. Cascade chain logic can be created automatically by the Quartus II software Compiler during design processing, or manually by the designer during design entry.

Cascade chains longer than ten LEs are implemented automatically by linking LABs together. For enhanced fitting, a long cascade chain skips alternate LABs in a MegaLAB structure. A cascade chain longer than one LAB skips either from an even-numbered LAB to the next even-numbered LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For example, the last LE of the first LAB in the upper-left MegaLAB structure carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in.

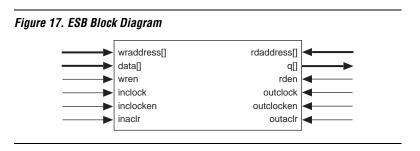
Figure 7. APEX 20K Cascade Chain

Select Vertical I/O Pins IOE IOE FastRow Interconnect IOE IOE Drive Local Interconnect FastRow Drives Local Interconnect and FastRow Interconnect in Two MegaLAB Structures Interconnect Local Interconnect LEs MegaLAB MegaLAB *LABs*

Figure 12. APEX 20KE FastRow Interconnect

Table 9 summarizes how various elements of the APEX 20K architecture drive each other.

From Previous Macrocell Product-Macrocell Term Product-Select Term Logic Matrix Parallel Expander Switch Product-Macrocell Term Product-Select Term Logic Matrix Parallel Expander Switch 32 Signals from To Next


Figure 16. APEX 20K Parallel Expanders

Embedded System Block

Local Interconnect

The ESB can implement various types of memory blocks, including dual-port RAM, ROM, FIFO, and CAM blocks. The ESB includes input and output registers; the input registers synchronize writes, and the output registers can pipeline designs to improve system performance. The ESB offers a dual-port mode, which supports simultaneous reads and writes at two different clock frequencies. Figure 17 shows the ESB block diagram.

Macrocell

ESBs can implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable (WE) signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the WE signal. In contrast, the ESB's synchronous RAM generates its own WE signal and is self-timed with respect to the global clock. Circuits using the ESB's self-timed RAM must only meet the setup and hold time specifications of the global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can be driven by the local interconnect, an adjacent LE can drive it directly for fast memory access. ESB outputs drive the MegaLAB and FastTrack Interconnect. In addition, ten ESB outputs, nine of which are unique output lines, drive the local interconnect for fast connection to adjacent LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the following sizes: 128×16 , 256×8 , 512×4 , $1,024 \times 2$, or $2,048 \times 1$. By combining multiple ESBs, the Quartus II software implements larger memory blocks automatically. For example, two 128×16 RAM blocks can be combined to form a 128×32 RAM block, and two 512×4 RAM blocks can be combined to form a 512×8 RAM block. Memory performance does not degrade for memory blocks up to 2,048 words deep. Each ESB can implement a 2,048-word-deep memory; the ESBs are used in parallel, eliminating the need for any external control logic and its associated delays.

To create a high-speed memory block that is more than 2,048 words deep, ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column of MegaLAB structures, and drives the MegaLAB interconnect and row and column FastTrack Interconnect throughout the column. Each ESB incorporates a programmable decoder to activate the tri-state driver appropriately. For instance, to implement 8,192-word-deep memory, four ESBs are used. Eleven address lines drive the ESB memory, and two more drive the tri-state decoder. Depending on which 2,048-word memory page is selected, the appropriate ESB driver is turned on, driving the output to the tri-state line. The Quartus II software automatically combines ESBs with tri-state lines to form deeper memory blocks. The internal tri-state control logic is designed to avoid internal contention and floating lines. See Figure 18.

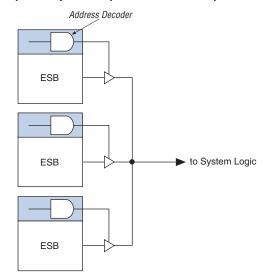


Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

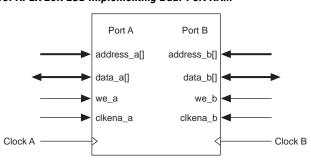
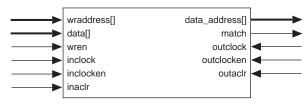



Figure 19. APEX 20K ESB Implementing Dual-Port RAM

Figure 23. APEX 20KE CAM Block Diagram

CAM can be used in any application requiring high-speed searches, such as networking, communications, data compression, and cache management.

The APEX 20KE on-chip CAM provides faster system performance than traditional discrete CAM. Integrating CAM and logic into the APEX 20KE device eliminates off-chip and on-chip delays, improving system performance.

When in CAM mode, the ESB implements 32-word, 32-bit CAM. Wider or deeper CAM can be implemented by combining multiple CAMs with some ancillary logic implemented in LEs. The Quartus II software combines ESBs and LEs automatically to create larger CAMs.

CAM supports writing "don't care" bits into words of the memory. The "don't-care" bit can be used as a mask for CAM comparisons; any bit set to "don't-care" has no effect on matches.

The output of the CAM can be encoded or unencoded. When encoded, the ESB outputs an encoded address of the data's location. For instance, if the data is located in address 12, the ESB output is 12. When unencoded, the ESB uses its 16 outputs to show the location of the data over two clock cycles. In this case, if the data is located in address 12, the 12th output line goes high. When using unencoded outputs, two clock cycles are required to read the output because a 16-bit output bus is used to show the status of 32 words.

The encoded output is better suited for designs that ensure duplicate data is not written into the CAM. If duplicate data is written into two locations, the CAM's output will be incorrect. If the CAM may contain duplicate data, the unencoded output is a better solution; CAM with unencoded outputs can distinguish multiple data locations.

CAM can be pre-loaded with data during configuration, or it can be written during system operation. In most cases, two clock cycles are required to write each word into CAM. When "don't-care" bits are used, a third clock cycle is required.

For designs that require both a multiplied and non-multiplied clock, the clock trace on the board can be connected to CLK2p. Table 14 shows the combinations supported by the ClockLock and ClockBoost circuitry. The CLK2p pin can feed both the ClockLock and ClockBoost circuitry in the APEX 20K device. However, when both circuits are used, the other clock pin (CLK1p) cannot be used.

Table 14. Multiplication Factor Combinations					
Clock 1 Clock 2					
×1	×1				
×1,×2 ×2					
×1, ×2, ×4	×4				

APEX 20KE ClockLock Feature

APEX 20KE devices include an enhanced ClockLock feature set. These devices include up to four PLLs, which can be used independently. Two PLLs are designed for either general-purpose use or LVDS use (on devices that support LVDS I/O pins). The remaining two PLLs are designed for general-purpose use. The EP20K200E and smaller devices have two PLLs; the EP20K300E and larger devices have four PLLs.

The following sections describe some of the features offered by the APEX 20KE PLLs.

External PLL Feedback

The ClockLock circuit's output can be driven off-chip to clock other devices in the system; further, the feedback loop of the PLL can be routed off-chip. This feature allows the designer to exercise fine control over the I/O interface between the APEX 20KE device and another high-speed device, such as SDRAM.

Clock Multiplication

The APEX 20KE ClockBoost circuit can multiply or divide clocks by a programmable number. The clock can be multiplied by $m/(n \times k)$ or $m/(n \times v)$, where m and k range from 2 to 160, and n and v range from 1 to 16. Clock multiplication and division can be used for time-domain multiplexing and other functions, which can reduce design LE requirements.

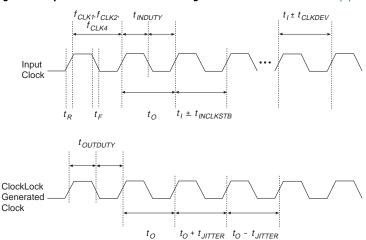


Figure 30. Specifications for the Incoming & Generated Clocks Note (1)

Note to Figure 30:

(1) The tl parameter refers to the nominal input clock period; the tO parameter refers to the nominal output clock period.

Table 15 summarizes the APEX 20K ClockLock and ClockBoost parameters for -1 speed-grade devices.

Symbol	Parameter	Min	Max	Unit MHz	
f _{OUT}	Output frequency	25	180		
f _{CLK1} (1)	Input clock frequency (ClockBoost clock multiplication factor equals 1)	25	180 (1)	MHz	
f _{CLK2}	Input clock frequency (ClockBoost clock multiplication factor equals 2)	16	90	MHz	
f _{CLK4}	Input clock frequency (ClockBoost clock multiplication factor equals 4)	10	48	MHz	
^t OUTDUTY	Duty cycle for ClockLock/ClockBoost-generated clock	40	60	%	
f _{CLKDEV}	Input deviation from user specification in the Quartus II software (ClockBoost clock multiplication factor equals 1) (2)		25,000 (3)	PPM	
t _R	Input rise time		5	ns	
t _F	Input fall time		5	ns	
t _{LOCK}	Time required for ClockLock/ClockBoost to acquire lock (4)		10	μs	

IEEE Std. 1149.1 (JTAG) Boundary-Scan Support

All APEX 20K devices provide JTAG BST circuitry that complies with the IEEE Std. 1149.1-1990 specification. JTAG boundary-scan testing can be performed before or after configuration, but not during configuration. APEX 20K devices can also use the JTAG port for configuration with the Quartus II software or with hardware using either Jam Files (.jam) or Jam Byte-Code Files (.jbc). Finally, APEX 20K devices use the JTAG port to monitor the logic operation of the device with the SignalTap embedded logic analyzer. APEX 20K devices support the JTAG instructions shown in Table 19. Although EP20K1500E devices support the JTAG BYPASS and SignalTap instructions, they do not support boundary-scan testing or the use of the JTAG port for configuration.

Table 19. APEX 20K JT	AG Instructions
JTAG Instruction	Description
SAMPLE/PRELOAD	Allows a snapshot of signals at the device pins to be captured and examined during normal device operation, and permits an initial data pattern to be output at the device pins. Also used by the SignalTap embedded logic analyzer.
EXTEST	Allows the external circuitry and board-level interconnections to be tested by forcing a test pattern at the output pins and capturing test results at the input pins.
BYPASS (1)	Places the 1-bit bypass register between the TDI and TDO pins, which allows the BST data to pass synchronously through selected devices to adjacent devices during normal device operation.
USERCODE	Selects the 32-bit USERCODE register and places it between the TDI and TDO pins, allowing the USERCODE to be serially shifted out of TDO.
IDCODE	Selects the IDCODE register and places it between TDI and TDO, allowing the IDCODE to be serially shifted out of TDO.
ICR Instructions	Used when configuring an APEX 20K device via the JTAG port with a MasterBlaster TM or ByteBlasterMV TM download cable, or when using a Jam File or Jam Byte-Code File via an embedded processor.
SignalTap Instructions (1)	Monitors internal device operation with the SignalTap embedded logic analyzer.

Note to Table 19:

(1) The EP20K1500E device supports the JTAG BYPASS instruction and the SignalTap instructions.

Table 22 shows the JTAG timing parameters and values for APEX 20K devices

Table 2	2. APEX 20K JTAG Timing Parameters & Values			
Symbol	Parameter	Min	Max	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t_{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		35	ns
t _{JSZX}	Update register high impedance to valid output		35	ns
t _{JSXZ}	Update register valid output to high impedance		35	ns

For more information, see the following documents:

- Application Note 39 (IEEE Std. 1149.1 (JTAG) Boundary-Scan Testing in Altera Devices)
- Jam Programming & Test Language Specification

Generic Testing

Each APEX 20K device is functionally tested. Complete testing of each configurable static random access memory (SRAM) bit and all logic functionality ensures 100% yield. AC test measurements for APEX 20K devices are made under conditions equivalent to those shown in Figure 32. Multiple test patterns can be used to configure devices during all stages of the production flow.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	3.3-V low-level TTL output voltage	I _{OL} = 12 mA DC, V _{CCIO} = 3.00 V (11)			0.45	V
	3.3-V low-level CMOS output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 3.00 V (11)			0.2	V
	3.3-V low-level PCI output voltage	I _{OL} = 1.5 mA DC, V _{CCIO} = 3.00 to 3.60 V (11)			0.1 × V _{CCIO}	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (11)			0.2	٧
	I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (11)			0.4	٧	
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (11)			0.7	٧
I _I	Input pin leakage current	$V_1 = 5.75 \text{ to } -0.5 \text{ V}$	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	$V_O = 5.75 \text{ to } -0.5 \text{ V}$	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	V _I = ground, no load, no toggling inputs, -1 speed grade (12)		10		mA
		V _I = ground, no load, no toggling inputs, -2, -3 speed grades (12)		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (13)	20		50	W
	before and during configuration	V _{CCIO} = 2.375 V (13)	30		80	W

Table 31. APEX 2	Table 31. APEX 20K f _{MAX} Timing Parameters (Part 2 of 2)					
Symbol	Parameter					
t _{ESBDATACO2}	ESB clock-to-output delay without output registers					
t _{ESBDD}	ESB data-in to data-out delay for RAM mode					
t _{PD}	ESB macrocell input to non-registered output					
t _{PTERMSU}	ESB macrocell register setup time before clock					
t _{PTERMCO}	ESB macrocell register clock-to-output delay					
t _{F1-4}	Fanout delay using local interconnect					
t _{F5-20}	Fanout delay using MegaLab Interconnect					
t _{F20+}	Fanout delay using FastTrack Interconnect					
t _{CH}	Minimum clock high time from clock pin					
t _{CL}	Minimum clock low time from clock pin					
t _{CLRP}	LE clear pulse width					
t _{PREP}	LE preset pulse width					
t _{ESBCH}	Clock high time					
t _{ESBCL}	Clock low time					
t _{ESBWP}	Write pulse width					
t _{ESBRP}	Read pulse width					

Tables 32 and 33 describe APEX 20K external timing parameters.

Table 32. APEX 20K External Timing Parameters Note (1)				
Symbol	Clock Parameter			
t _{INSU}	Setup time with global clock at IOE register			
t _{INH}	Hold time with global clock at IOE register			
tоитсо	Clock-to-output delay with global clock at IOE register			

Table 33. APEX	Table 33. APEX 20K External Bidirectional Timing Parameters Note (1)					
Symbol	Parameter	Conditions				
t _{INSUBIDIR}	Setup time for bidirectional pins with global clock at same-row or same-column LE register					
t _{INHBIDIR}	Hold time for bidirectional pins with global clock at same-row or same-column LE register					
^t OUTCOBIDIR	Clock-to-output delay for bidirectional pins with global clock at IOE register	C1 = 10 pF				
t _{XZBIDIR}	Synchronous IOE output buffer disable delay	C1 = 10 pF				
t _{ZXBIDIR}	Synchronous IOE output buffer enable delay, slow slew rate = off	C1 = 10 pF				

Table 43. EP20K100 External Timing Parameters								
Symbol	-1 Spe	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{INSU} (1)	2.3		2.8		3.2		ns	
t _{INH} (1)	0.0		0.0		0.0		ns	
t _{OUTCO} (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns	
t _{INSU} (2)	1.1		1.2		-		ns	
t _{INH} (2)	0.0		0.0		-		ns	
t _{OUTCO} (2)	0.5	2.7	0.5	3.1	_	4.8	ns	

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	2.3		2.8		3.2		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
toutcobidir (1)	2.0	4.5	2.0	4.9	2.0	6.6	ns
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns
t _{INSUBIDIR} (2)	1.0		1.2		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
toutcobidir (2)	0.5	2.7	0.5	3.1	-	-	ns
t _{XZBIDIR} (2)		4.3		5.0		_	ns
t _{ZXBIDIR} (2)		4.3		5.0		_	ns

Table 45. EP20	K200 Externa	l Timing Para	meters				
Symbol	-1 Speed Grade		-2 Spe	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{INSU} (1)	1.9		2.3		2.6		ns
t _{INH} (1)	0.0		0.0		0.0		ns
t _{OUTCO} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns
t _{INSU} (2)	1.1		1.2		-		ns
t _{INH} (2)	0.0		0.0		-		ns
t _{оитсо} <i>(2)</i>	0.5	2.7	0.5	3.1	-	_	ns

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	1.9		2.3		2.6		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR} (1)	2.0	4.6	2.0	5.6	2.0	6.8	ns
t _{XZBIDIR} (1)		5.0		5.9		6.9	ns
t _{ZXBIDIR} (1)		5.0		5.9		6.9	ns
t _{INSUBIDIR} (2)	1.1		1.2		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
t _{OUTCOBIDIR} (2)	0.5	2.7	0.5	3.1	-	_	ns
t _{XZBIDIR} (2)		4.3		5.0		_	ns
t _{ZXBIDIR} (2)		4.3		5.0		_	ns

Table 47. EP2	20K400 Extern	al Timing Par	ameters					
Symbol	-1 Speed Grade		-2 Spec	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{INSU} (1)	1.4		1.8		2.0		ns	
t _{INH} (1)	0.0		0.0		0.0		ns	
t _{OUTCO} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns	
t _{INSU} (2)	0.4		1.0		-		ns	
t _{INH} (2)	0.0		0.0		_		ns	
t _{OUTCO} (2)	0.5	3.1	0.5	4.1	_	_	ns	

Table 48. EP20K400 External Bidirections	I Timina	Parameters 1 4 1
--	----------	------------------

Symbol	-1 Spee	d Grade	-2 Spee	d Grade	-3 Spe	ed Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR} (1)	1.4		1.8		2.0		ns
t _{INHBIDIR} (1)	0.0		0.0		0.0		ns
t _{OUTCOBIDIR} (1)	2.0	4.9	2.0	6.1	2.0	7.0	ns
t _{XZBIDIR} (1)		7.3		8.9		10.3	ns
t _{ZXBIDIR} (1)		7.3		8.9		10.3	ns
t _{INSUBIDIR} (2)	0.5		1.0		-		ns
t _{INHBIDIR} (2)	0.0		0.0		-		ns
toutcobidir (2)	0.5	3.1	0.5	4.1	-	-	ns
t _{XZBIDIR} (2)		6.2		7.6		-	ns
t _{ZXBIDIR} (2)		6.2		7.6		_	ns

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	2.86		3.24		3.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	5.07	2.00	5.59	2.00	6.13	ns
t _{XZBIDIR}		7.43		8.23		8.58	ns
t _{ZXBIDIR}		7.43		8.23		8.58	ns
t _{INSUBIDIRPLL}	4.93		5.48		-		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
toutcobidirpll	0.50	3.00	0.50	3.35	-	-	ns
txzbidirpll		5.36		5.99		-	ns
t _{ZXBIDIRPLL}		5.36		5.99		-	ns

Tables 73 through 78 describe f_{MAX} LE Timing Microparameters, f_{MAX} ESB Timing Microparameters, f_{MAX} Routing Delays, Minimum Pulse Width Timing Parameters, External Timing Parameters, and External Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 73. EP2	20K200E f _{MAX}	LE Timing Mid	croparameter	s			
Symbol	-	1		-2	-:	Unit	
	Min	Max	Min	Max	Min	Max	
t _{SU}	0.23		0.24		0.26		ns
t _H	0.23		0.24		0.26		ns
t_{CO}		0.26		0.31		0.36	ns
t _{LUT}		0.70		0.90		1.14	ns

Table 87. EP2	0K400E f _{MAX}	Routing Delay	'S				
Symbol	-1 Spee	d Grade	-2 Spe	-2 Speed Grade		d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{F1-4}		0.25		0.25		0.26	ns
t _{F5-20}		1.01		1.12		1.25	ns
t _{F20+}		3.71		3.92		4.17	ns

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.36		2.22		2.35		ns	
t _{CL}	1.36		2.26		2.35		ns	
t _{CLRP}	0.18		0.18		0.19		ns	
t _{PREP}	0.18		0.18		0.19		ns	
t _{ESBCH}	1.36		2.26		2.35		ns	
t _{ESBCL}	1.36		2.26		2.35		ns	
t _{ESBWP}	1.17		1.38		1.56		ns	
t _{ESBRP}	0.94		1.09		1.25		ns	

Table 89. EP2	20K400E Exteri	nal Timing Pa	rameters				
Symbol	-1 Spee	d Grade	-2 Spee	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.51		2.64		2.77		ns
t _{INH}	0.00		0.00		0.00		ns
t _{OUTCO}	2.00	5.25	2.00	5.79	2.00	6.32	ns
t _{INSUPLL}	3.221		3.38		-		ns
t _{INHPLL}	0.00		0.00		-		ns
t _{OUTCOPLL}	0.50	2.25	0.50	2.45	-	-	ns

Symbol	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	3.47		3.68		3.99		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
toutcobidir	2.00	6.18	2.00	6.81	2.00	7.36	ns
t _{XZBIDIR}		6.91		7.62		8.38	ns
t _{ZXBIDIR}		6.91		7.62		8.38	ns
t _{INSUBIDIRPLL}	3.05		3.26				ns
t _{INHBIDIRPLL}	0.00		0.00				ns
toutcobidirpll	0.50	2.67	0.50	2.99			ns
t _{XZBIDIRPLL}		3.41		3.80			ns
tzxbidirpll		3.41		3.80			ns

Tables 109 and 110 show selectable I/O standard input and output delays for APEX 20KE devices. If you select an I/O standard input or output delay other than LVCMOS, add or subtract the selected speed grade to or from the LVCMOS value.

Table 109. Selectable I/O Standard Input Delays										
Symbol	-1 Spec	-1 Speed Grade		-2 Speed Grade		-3 Speed Grade				
	Min	Max	Min	Max	Min	Max	Min			
LVCMOS		0.00		0.00		0.00	ns			
LVTTL		0.00		0.00		0.00	ns			
2.5 V		0.00		0.04		0.05	ns			
1.8 V		-0.11		0.03		0.04	ns			
PCI		0.01		0.09		0.10	ns			
GTL+		-0.24		-0.23		-0.19	ns			
SSTL-3 Class I		-0.32		-0.21		-0.47	ns			
SSTL-3 Class II		-0.08		0.03		-0.23	ns			
SSTL-2 Class I		-0.17		-0.06		-0.32	ns			
SSTL-2 Class II		-0.16		-0.05		-0.31	ns			
LVDS		-0.12		-0.12		-0.12	ns			
CTT		0.00		0.00		0.00	ns			
AGP		0.00		0.00		0.00	ns			

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

