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All APEX 20K devices are reconfigurable and are 100% tested prior to 
shipment. As a result, test vectors do not have to be generated for fault 
coverage purposes. Instead, the designer can focus on simulation and 
design verification. In addition, the designer does not need to manage 
inventories of different application-specific integrated circuit (ASIC) 
designs; APEX 20K devices can be configured on the board for the specific 
functionality required.

APEX 20K devices are configured at system power-up with data stored in 
an Altera serial configuration device or provided by a system controller. 
Altera offers in-system programmability (ISP)-capable EPC1, EPC2, and 
EPC16 configuration devices, which configure APEX 20K devices via a 
serial data stream. Moreover, APEX 20K devices contain an optimized 
interface that permits microprocessors to configure APEX 20K devices 
serially or in parallel, and synchronously or asynchronously. The interface 
also enables microprocessors to treat APEX 20K devices as memory and 
configure the device by writing to a virtual memory location, making 
reconfiguration easy.

After an APEX 20K device has been configured, it can be reconfigured 
in-circuit by resetting the device and loading new data. Real-time changes 
can be made during system operation, enabling innovative reconfigurable 
computing applications.

APEX 20K devices are supported by the Altera Quartus II development 
system, a single, integrated package that offers HDL and schematic design 
entry, compilation and logic synthesis, full simulation and worst-case 
timing analysis, SignalTap logic analysis, and device configuration. The 
Quartus II software runs on Windows-based PCs, Sun SPARCstations, 
and HP 9000 Series 700/800 workstations. 

The Quartus II software provides NativeLink interfaces to other industry-
standard PC- and UNIX workstation-based EDA tools. For example, 
designers can invoke the Quartus II software from within third-party 
design tools. Further, the Quartus II software contains built-in optimized 
synthesis libraries; synthesis tools can use these libraries to optimize 
designs for APEX 20K devices. For example, the Synopsys Design 
Compiler library, supplied with the Quartus II development system, 
includes DesignWare functions optimized for the APEX 20K architecture.
8 Altera Corporation
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Functional 
Description

APEX 20K devices incorporate LUT-based logic, product-term-based 
logic, and memory into one device. Signal interconnections within 
APEX 20K devices (as well as to and from device pins) are provided by the 
FastTrack® Interconnect—a series of fast, continuous row and column 
channels that run the entire length and width of the device.

Each I/O pin is fed by an I/O element (IOE) located at the end of each row 
and column of the FastTrack Interconnect. Each IOE contains a 
bidirectional I/O buffer and a register that can be used as either an input 
or output register to feed input, output, or bidirectional signals. When 
used with a dedicated clock pin, these registers provide exceptional 
performance. IOEs provide a variety of features, such as 3.3-V, 64-bit, 
66-MHz PCI compliance; JTAG BST support; slew-rate control; and 
tri-state buffers. APEX 20KE devices offer enhanced I/O support, 
including support for 1.8-V I/O, 2.5-V I/O, LVCMOS, LVTTL, LVPECL, 
3.3-V PCI, PCI-X, LVDS, GTL+, SSTL-2, SSTL-3, HSTL, CTT, and 3.3-V 
AGP I/O standards.

The ESB can implement a variety of memory functions, including CAM, 
RAM, dual-port RAM, ROM, and FIFO functions. Embedding the 
memory directly into the die improves performance and reduces die area 
compared to distributed-RAM implementations. Moreover, the 
abundance of cascadable ESBs ensures that the APEX 20K device can 
implement multiple wide memory blocks for high-density designs. The 
ESB’s high speed ensures it can implement small memory blocks without 
any speed penalty. The abundance of ESBs ensures that designers can 
create as many different-sized memory blocks as the system requires. 
Figure 1 shows an overview of the APEX 20K device.

Figure 1. APEX 20K Device Block Diagram
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Each LE has two outputs that drive the local, MegaLAB, or FastTrack 
Interconnect routing structure. Each output can be driven independently 
by the LUT’s or register’s output. For example, the LUT can drive one 
output while the register drives the other output. This feature, called 
register packing, improves device utilization because the register and the 
LUT can be used for unrelated functions. The LE can also drive out 
registered and unregistered versions of the LUT output.

The APEX 20K architecture provides two types of dedicated high-speed 
data paths that connect adjacent LEs without using local interconnect 
paths: carry chains and cascade chains. A carry chain supports high-speed 
arithmetic functions such as counters and adders, while a cascade chain 
implements wide-input functions such as equality comparators with 
minimum delay. Carry and cascade chains connect LEs 1 through 10 in an 
LAB and all LABs in the same MegaLAB structure.

Carry Chain

The carry chain provides a very fast carry-forward function between LEs. 
The carry-in signal from a lower-order bit drives forward into the higher-
order bit via the carry chain, and feeds into both the LUT and the next 
portion of the carry chain. This feature allows the APEX 20K architecture 
to implement high-speed counters, adders, and comparators of arbitrary 
width. Carry chain logic can be created automatically by the Quartus II 
software Compiler during design processing, or manually by the designer 
during design entry. Parameterized functions such as library of 
parameterized modules (LPM) and DesignWare functions automatically 
take advantage of carry chains for the appropriate functions.

The Quartus II software Compiler creates carry chains longer than ten LEs 
by linking LABs together automatically. For enhanced fitting, a long carry 
chain skips alternate LABs in a MegaLAB™ structure. A carry chain longer 
than one LAB skips either from an even-numbered LAB to the next even-
numbered LAB, or from an odd-numbered LAB to the next odd-
numbered LAB. For example, the last LE of the first LAB in the upper-left 
MegaLAB structure carries to the first LE of the third LAB in the 
MegaLAB structure.

Figure 6 shows how an n-bit full adder can be implemented in n + 1 LEs 
with the carry chain. One portion of the LUT generates the sum of two bits 
using the input signals and the carry-in signal; the sum is routed to the 
output of the LE. The register can be bypassed for simple adders or used 
for accumulator functions. Another portion of the LUT and the carry chain 
logic generates the carry-out signal, which is routed directly to the carry-
in signal of the next-higher-order bit. The final carry-out signal is routed 
to an LE, where it is driven onto the local, MegaLAB, or FastTrack 
Interconnect routing structures.
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Cascade Chain

With the cascade chain, the APEX 20K architecture can implement 
functions with a very wide fan-in. Adjacent LUTs can compute portions 
of a function in parallel; the cascade chain serially connects the 
intermediate values. The cascade chain can use a logical AND or logical OR 
(via De Morgan’s inversion) to connect the outputs of adjacent LEs. Each 
additional LE provides four more inputs to the effective width of a 
function, with a short cascade delay. Cascade chain logic can be created 
automatically by the Quartus II software Compiler during design 
processing, or manually by the designer during design entry.

Cascade chains longer than ten LEs are implemented automatically by 
linking LABs together. For enhanced fitting, a long cascade chain skips 
alternate LABs in a MegaLAB structure. A cascade chain longer than one 
LAB skips either from an even-numbered LAB to the next even-numbered 
LAB, or from an odd-numbered LAB to the next odd-numbered LAB. For 
example, the last LE of the first LAB in the upper-left MegaLAB structure 
carries to the first LE of the third LAB in the MegaLAB structure. Figure 7 
shows how the cascade function can connect adjacent LEs to form 
functions with a wide fan-in.

Figure 7. APEX 20K Cascade Chain
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Figure 11 shows the intersection of a row and column interconnect, and 
how these forms of interconnects and LEs drive each other.

Figure 11. Driving the FastTrack Interconnect

APEX 20KE devices include an enhanced interconnect structure for faster 
routing of input signals with high fan-out. Column I/O pins can drive the 
FastRow™ interconnect, which routes signals directly into the local 
interconnect without having to drive through the MegaLAB interconnect. 
FastRow lines traverse two MegaLAB structures. Also, these pins can 
drive the local interconnect directly for fast setup times. On EP20K300E 
and larger devices, the FastRow interconnect drives the two MegaLABs in 
the top left corner, the two MegaLABs in the top right corner, the two 
MegaLABS in the bottom left corner, and the two MegaLABs in the 
bottom right corner. On EP20K200E and smaller devices, FastRow 
interconnect drives the two MegaLABs on the top and the two MegaLABs 
on the bottom of the device. On all devices, the FastRow interconnect 
drives all local interconnect in the appropriate MegaLABs except the local 
interconnect on the side of the MegaLAB opposite the ESB. Pins using the 
FastRow interconnect achieve a faster set-up time, as the signal does not 
need to use a MegaLAB interconnect line to reach the destination LE. 
Figure 12 shows the FastRow interconnect.
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Figure 12. APEX 20KE FastRow Interconnect

Table 9 summarizes how various elements of the APEX 20K architecture 
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Figure 14. APEX 20K Macrocell
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ESBs can implement synchronous RAM, which is easier to use than 
asynchronous RAM. A circuit using asynchronous RAM must generate 
the RAM write enable (WE) signal, while ensuring that its data and address 
signals meet setup and hold time specifications relative to the WE signal. 
In contrast, the ESB’s synchronous RAM generates its own WE signal and 
is self-timed with respect to the global clock. Circuits using the ESB’s self-
timed RAM must only meet the setup and hold time specifications of the 
global clock.

ESB inputs are driven by the adjacent local interconnect, which in turn can 
be driven by the MegaLAB or FastTrack Interconnect. Because the ESB can 
be driven by the local interconnect, an adjacent LE can drive it directly for 
fast memory access. ESB outputs drive the MegaLAB and FastTrack 
Interconnect. In addition, ten ESB outputs, nine of which are unique 
output lines, drive the local interconnect for fast connection to adjacent 
LEs or for fast feedback product-term logic.

When implementing memory, each ESB can be configured in any of the 
following sizes: 128 × 16, 256 × 8, 512 × 4, 1,024 × 2, or 2,048 × 1. By 
combining multiple ESBs, the Quartus II software implements larger 
memory blocks automatically. For example, two 128 × 16 RAM blocks can 
be combined to form a 128 × 32 RAM block, and two 512 × 4 RAM blocks 
can be combined to form a 512 × 8 RAM block. Memory performance does 
not degrade for memory blocks up to 2,048 words deep. Each ESB can 
implement a 2,048-word-deep memory; the ESBs are used in parallel, 
eliminating the need for any external control logic and its associated 
delays.

To create a high-speed memory block that is more than 2,048 words deep, 
ESBs drive tri-state lines. Each tri-state line connects all ESBs in a column 
of MegaLAB structures, and drives the MegaLAB interconnect and row 
and column FastTrack Interconnect throughout the column. Each ESB 
incorporates a programmable decoder to activate the tri-state driver 
appropriately. For instance, to implement 8,192-word-deep memory, four 
ESBs are used. Eleven address lines drive the ESB memory, and two more 
drive the tri-state decoder. Depending on which 2,048-word memory 
page is selected, the appropriate ESB driver is turned on, driving the 
output to the tri-state line. The Quartus II software automatically 
combines ESBs with tri-state lines to form deeper memory blocks. The 
internal tri-state control logic is designed to avoid internal contention and 
floating lines. See Figure 18.
30 Altera Corporation
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Input/Output Clock Mode

The input/output clock mode contains two clocks. One clock controls all 
registers for inputs into the ESB: data input, WE, RE, read address, and 
write address. The other clock controls the ESB data output registers. The 
ESB also supports clock enable and asynchronous clear signals; these 
signals also control the reading and writing of registers independently. 
Input/output clock mode is commonly used for applications where the 
reads and writes occur at the same system frequency, but require different 
clock enable signals for the input and output registers. Figure 21 shows 
the ESB in input/output clock mode.

Figure 21. ESB in Input/Output Clock Mode Note (1)

Notes to Figure 21:
(1) All registers can be cleared asynchronously by ESB local interconnect signals, global signals, or the chip-wide reset.
(2) APEX 20KE devices have four dedicated clocks.

Single-Port Mode

The APEX 20K ESB also supports a single-port mode, which is used when 
simultaneous reads and writes are not required. See Figure 22.
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Each IOE drives a row, column, MegaLAB, or local interconnect when 
used as an input or bidirectional pin. A row IOE can drive a local, 
MegaLAB, row, and column interconnect; a column IOE can drive the 
column interconnect. Figure 27 shows how a row IOE connects to the 
interconnect.

Figure 27. Row IOE Connection to the Interconnect
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Figure 28 shows how a column IOE connects to the interconnect.

Figure 28. Column IOE Connection to the Interconnect
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Under hot socketing conditions, APEX 20KE devices will not sustain any 
damage, but the I/O pins will drive out.

MultiVolt I/O 
Interface

The APEX device architecture supports the MultiVolt I/O interface 
feature, which allows APEX devices in all packages to interface with 
systems of different supply voltages. The devices have one set of VCC pins 
for internal operation and input buffers (VCCINT), and another set for I/O 
output drivers (VCCIO).

The APEX 20K VCCINT pins must always be connected to a 2.5 V power 
supply. With a 2.5-V VCCINT level, input pins are 2.5-V, 3.3-V, and 5.0-V 
tolerant. The VCCIO pins can be connected to either a 2.5-V or 3.3-V power 
supply, depending on the output requirements. When VCCIO pins are 
connected to a 2.5-V power supply, the output levels are compatible with 
2.5-V systems. When the VCCIO pins are connected to a 3.3-V power 
supply, the output high is 3.3 V and is compatible with 3.3-V or 5.0-V 
systems.

Table 12 summarizes 5.0-V tolerant APEX 20K MultiVolt I/O support.

Notes to Table 12:
(1) The PCI clamping diode must be disabled to drive an input with voltages higher 

than VCCIO.
(2) When VCCIO = 3.3 V, an APEX 20K device can drive a 2.5-V device with 3.3-V 

tolerant inputs. 

Open-drain output pins on 5.0-V tolerant APEX 20K devices (with a pull-
up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that 
require a VIH of 3.5 V. When the pin is inactive, the trace will be pulled up 
to 5.0 V by the resistor. The open-drain pin will only drive low or tri-state; 
it will never drive high. The rise time is dependent on the value of the pull-
up resistor and load impedance. The IOL current specification should be 
considered when selecting a pull-up resistor.

Table 12. 5.0-V Tolerant APEX 20K MultiVolt I/O Support

VCCIO (V) Input Signals (V) Output Signals (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v(1) v(1) v

3.3 v v v(1) v(2) v v
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Notes to Table 15:
(1) The PLL input frequency range for the EP20K100-1X device for 1x multiplication is 25 MHz to 175 MHz.
(2) All input clock specifications must be met. The PLL may not lock onto an incoming clock if the clock specifications 

are not met, creating an erroneous clock within the device.
(3) During device configuration, the ClockLock and ClockBoost circuitry is configured first. If the incoming clock is 

supplied during configuration, the ClockLock and ClockBoost circuitry locks during configuration, because the lock 
time is less than the configuration time.

(4) The jitter specification is measured under long-term observation.
(5) If the input clock stability is 100 ps, tJITTER is 250 ps.

Table 16 summarizes the APEX 20K ClockLock and ClockBoost 
parameters for -2 speed grade devices. 

tSKEW Skew delay between related 
ClockLock/ClockBoost-generated clocks

500 ps

tJITTER Jitter on ClockLock/ClockBoost-generated clock 
(5)

200 ps

tINCLKSTB Input clock stability (measured between adjacent 
clocks)

50 ps

Table 15. APEX 20K ClockLock & ClockBoost Parameters for -1 Speed-Grade Devices  (Part 2 of 2)

Symbol Parameter Min Max Unit

Table 16. APEX 20K ClockLock & ClockBoost Parameters for -2 Speed Grade Devices

Symbol Parameter Min Max Unit

fOUT Output frequency 25 170 MHz

fCLK1 Input clock frequency (ClockBoost clock multiplication 
factor equals 1)

25 170 MHz

fCLK2 Input clock frequency (ClockBoost clock multiplication 
factor equals 2)

16 80 MHz

fCLK4 Input clock frequency (ClockBoost clock multiplication 
factor equals 4)

10 34 MHz

tOUTDUTY Duty cycle for ClockLock/ClockBoost-generated clock 40 60 %
fCLKDEV Input deviation from user specification in the Quartus II 

software (ClockBoost clock multiplication factor equals 
one) (1)

25,000 (2) PPM

tR Input rise time 5 ns

tF Input fall time 5 ns

tLOCK Time required for ClockLock/ ClockBoost to acquire 
lock (3)

10 µs

tSKEW Skew delay between related ClockLock/ ClockBoost-
generated clock

500 500 ps

tJITTER Jitter on ClockLock/ ClockBoost-generated clock (4) 200 ps

tINCLKSTB Input clock stability (measured between adjacent 
clocks)

50 ps
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1 For DC Operating Specifications on APEX 20KE I/O standards, 
please refer to Application Note 117 (Using Selectable I/O Standards 
in Altera Devices).

Notes to Tables 27 through 30:
(1) See the Operating Requirements for Altera Devices Data Sheet.
(2) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.75 V for 

input currents less than 100 mA and periods shorter than 20 ns.
(3) Numbers in parentheses are for industrial-temperature-range devices.
(4) Maximum VCC rise time is 100 ms, and VCC must rise monotonically.
(5) Minimum DC input is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to the voltage 

shown in the following table based on input duty cycle for input currents less than 100 mA. The overshoot is 
dependent upon duty cycle of the signal. The DC case is equivalent to 100% duty cycle.
Vin                   Max. Duty Cycle
4.0V                 100% (DC)
4.1                    90%
4.2                    50%
4.3                    30%
4.4                    17%
4.5                    10%

(6) All pins, including dedicated inputs, clock, I/O, and JTAG pins, may be driven before VCCINT and VCCIO are 
powered.

(7) Typical values are for TA = 25° C, VCCINT = 1.8 V, and VCCIO = 1.8 V, 2.5 V or 3.3 V.
(8) These values are specified under the APEX 20KE device recommended operating conditions, shown in Table 24 on 

page 60.
(9) Refer to Application Note 117 (Using Selectable I/O Standards in Altera Devices) for the VIH, VIL, VOH, VOL, and II 

parameters when VCCIO = 1.8 V.
(10) The APEX 20KE input buffers are compatible with 1.8-V, 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. 

Additionally, the input buffers are 3.3-V PCI compliant. Input buffers also meet specifications for GTL+, CTT, AGP, 
SSTL-2, SSTL-3, and HSTL.

(11) The IOH parameter refers to high-level TTL, PCI, or CMOS output current.
(12) The IOL parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins 

as well as output pins.
(13) This value is specified for normal device operation. The value may vary during power-up.
(14) Pin pull-up resistance values will be lower if an external source drives the pin higher than VCCIO.
(15) Capacitance is sample-tested only.

Figure 33 shows the relationship between VCCIO and VCCINT for 3.3-V PCI 
compliance on APEX 20K devices.

Table 30. APEX 20KE Device Capacitance Note (15)

Symbol Parameter Conditions Min Max Unit
CIN Input capacitance VIN = 0 V, f = 1.0 MHz 8 pF

CINCLK Input capacitance on 
dedicated clock pin

VIN = 0 V, f = 1.0 MHz 12 pF

COUT Output capacitance VOUT = 0 V, f = 1.0 MHz 8 pF
Altera Corporation  65
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Figure 39. ESB Synchronous Timing Waveforms

Figure 40 shows the timing model for bidirectional I/O pin timing.
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Note to Tables 32 and 33:
(1) These timing parameters are sample-tested only.

Tables 34 through 37 show APEX 20KE LE, ESB, routing, and functional 
timing microparameters for the fMAX timing model.

Table 34. APEX 20KE LE Timing Microparameters

Symbol Parameter

tSU LE register setup time before clock

tH LE register hold time after clock

tCO LE register clock-to-output delay

tLUT LUT delay for data-in to data-out

Table 35. APEX 20KE ESB Timing Microparameters

Symbol Parameter

tESBARC ESB Asynchronous read cycle time

tESBSRC ESB Synchronous read cycle time

tESBAWC ESB Asynchronous write cycle time

tESBSWC ESB Synchronous write cycle time

tESBWASU ESB write address setup time with respect to WE

tESBWAH ESB write address hold time with respect to WE

tESBWDSU ESB data setup time with respect to WE

tESBWDH ESB data hold time with respect to WE

tESBRASU ESB read address setup time with respect to RE

tESBRAH ESB read address hold time with respect to RE

tESBWESU ESB WE setup time before clock when using input register

tESBWEH ESB WE hold time after clock when using input register

tESBDATASU ESB data setup time before clock when using input register

tESBDATAH ESB data hold time after clock when using input register

tESBWADDRSU ESB write address setup time before clock when using input 
registers

tESBRADDRSU ESB read address setup time before clock when using input 
registers

tESBDATACO1 ESB clock-to-output delay when using output registers

tESBDATACO2 ESB clock-to-output delay without output registers

tESBDD ESB data-in to data-out delay for RAM mode

tPD ESB Macrocell input to non-registered output

tPTERMSU ESB Macrocell register setup time before clock

tPTERMCO ESB Macrocell register clock-to-output delay 
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Tables 43 through 48 show the I/O external and external bidirectional 
timing parameter values for EP20K100, EP20K200, and EP20K400 
APEX 20K devices.

Table 42. EP20K400 fMAX Timing Parameters

Symbol -1 Speed Grade -2 Speed Grade -3 Speed Grade Units

Min Max Min Max Min Max

tSU 0.1 0.3 0.6 ns

tH 0.5 0.8 0.9 ns

tCO 0.1 0.4 0.6 ns

tLUT 1.0 1.2 1.4 ns

tESBRC 1.7 2.1 2.4 ns

tESBWC 5.7 6.9 8.1 ns

tESBWESU 3.3 3.9 4.6 ns

tESBDATASU 2.2 2.7 3.1 ns

tESBDATAH 0.6 0.8 0.9 ns

tESBADDRSU 2.4 2.9 3.3 ns

tESBDATACO1 1.3 1.6 1.8 ns

tESBDATACO2 2.5 3.1 3.6 ns

tESBDD 2.5 3.3 3.6 ns

tPD 2.5 3.1 3.6 ns

tPTERMSU 1.7 2.1 2.4 ns

tPTERMCO 1.0 1.2 1.4 ns

tF1-4 0.4 0.5 0.6 ns

tF5-20 2.6 2.8 2.9 ns

tF20+ 3.7 3.8 3.9 ns

tCH 2.0 2.5 3.0 ns

tCL 2.0 2.5 3.0 ns

tCLRP 0.5 0.6 0.8 ns

tPREP 0.5 0.5 0.5 ns

tESBCH 2.0 2.5 3.0 ns

tESBCL 2.0 2.5 3.0 ns

tESBWP 1.5 1.9 2.2 ns

tESBRP 1.0 1.2 1.4 ns
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Tables 67 through 72 describe fMAX LE Timing Microparameters, 
fMAX ESB Timing Microparameters, fMAX Routing Delays, Minimum 
Pulse Width Timing Parameters, External Timing Parameters, and 
External Bidirectional Timing Parameters for EP20K160E APEX 
20KE devices.

Table 67. EP20K160E fMAX LE Timing Microparameters 

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tSU 0.22 0.24 0.26 ns

tH 0.22 0.24 0.26 ns

tCO 0.25 0.31 0.35 ns

tLUT 0.69 0.88 1.12 ns
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Tables 73 through 78 describe fMAX LE Timing Microparameters, fMAX 
ESB Timing Microparameters, fMAX Routing Delays, Minimum Pulse 
Width Timing Parameters, External Timing Parameters, and External 
Bidirectional Timing Parameters for EP20K200E APEX 20KE devices.

Table 72. EP20K160E External Bidirectional Timing Parameters

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tI N S U B I D I R 2.86 3.24 3.54 ns

tI N H B I D I R 0.00 0.00 0.00 ns

tO U T C O B I D I R 2.00 5.07 2.00 5.59 2.00 6.13 ns

tX Z B I D I R 7.43 8.23 8.58 ns

tZ X B I D I R 7.43 8.23 8.58 ns

tI N S U B I D I R P L L 4.93 5.48 - ns

tI N H B I D I R P L L 0.00 0.00 - ns

tO U T C O B I D I R P L L 0.50 3.00 0.50 3.35 - - ns

tX Z B I D I R P L L 5.36 5.99 - ns

tZ X B I D I R P L L 5.36 5.99 - ns

Table 73. EP20K200E fMAX LE Timing Microparameters 

Symbol -1 -2 -3 Unit

Min Max Min Max Min Max

tSU 0.23 0.24 0.26 ns

tH 0.23 0.24 0.26 ns

tCO 0.26 0.31 0.36 ns

tLUT 0.70 0.90 1.14 ns
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SRAM configuration elements allow APEX 20K devices to be 
reconfigured in-circuit by loading new configuration data into the 
device. Real-time reconfiguration is performed by forcing the device 
into command mode with a device pin, loading different 
configuration data, reinitializing the device, and resuming user-
mode operation. In-field upgrades can be performed by distributing 
new configuration files.

Configuration Schemes

The configuration data for an APEX 20K device can be loaded with 
one of five configuration schemes (see Table 111), chosen on the basis 
of the target application. An EPC2 or EPC16 configuration device, 
intelligent controller, or the JTAG port can be used to control the 
configuration of an APEX 20K device. When a configuration device 
is used, the system can configure automatically at system power-up. 

Multiple APEX 20K devices can be configured in any of five 
configuration schemes by connecting the configuration enable (nCE) 
and configuration enable output (nCEO) pins on each device.

f For more information on configuration, see Application Note 116 
(Configuring APEX 20K, FLEX 10K, & FLEX 6000 Devices.)

Device Pin-Outs See the Altera web site (http://www.altera.com) or the Altera Digital 
Library for pin-out information

Table 111. Data Sources for Configuration

Configuration Scheme Data Source

Configuration device EPC1, EPC2, EPC16 configuration devices

Passive serial (PS) MasterBlaster or ByteBlasterMV download cable or serial data source

Passive parallel asynchronous (PPA) Parallel data source

Passive parallel synchronous (PPS) Parallel data source

JTAG MasterBlaster or ByteBlasterMV download cable or a microprocessor 
with a Jam or JBC File
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