

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Obsolete
Number of LABs/CLBs	1664
Number of Logic Elements/Cells	16640
Total RAM Bits	212992
Number of I/O	488
Number of Gates	1052000
Voltage - Supply	1.71V ~ 1.89V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep20k400ef27c1xnga

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Flexible clock management circuitry with up to four phase-locked loops (PLLs)
 - Built-in low-skew clock tree
 - Up to eight global clock signals
 - ClockLock[®] feature reducing clock delay and skew
 - ClockBoost[®] feature providing clock multiplication and division
 - ClockShift™ programmable clock phase and delay shifting

Powerful I/O features

- Compliant with peripheral component interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification, Revision 2.2 for 3.3-V operation at 33 or 66 MHz and 32 or 64 bits
- Support for high-speed external memories, including DDR SDRAM and ZBT SRAM (ZBT is a trademark of Integrated Device Technology, Inc.)
- Bidirectional I/O performance ($t_{CO} + t_{SU}$) up to 250 MHz
- LVDS performance up to 840 Mbits per channel
- Direct connection from I/O pins to local interconnect providing fast t_{CO} and t_{SU} times for complex logic
- MultiVolt I/O interface support to interface with 1.8-V, 2.5-V, 3.3-V, and 5.0-V devices (see Table 3)
- Programmable clamp to V_{CCIO}
- Individual tri-state output enable control for each pin
- Programmable output slew-rate control to reduce switching noise
- Support for advanced I/O standards, including low-voltage differential signaling (LVDS), LVPECL, PCI-X, AGP, CTT, stubseries terminated logic (SSTL-3 and SSTL-2), Gunning transceiver logic plus (GTL+), and high-speed terminated logic (HSTL Class I)
- Pull-up on I/O pins before and during configuration

Advanced interconnect structure

- Four-level hierarchical FastTrack[®] Interconnect structure providing fast, predictable interconnect delays
- Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)
- Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)
- Interleaved local interconnect allows one LE to drive 29 other LEs through the fast local interconnect

Advanced packaging options

- Available in a variety of packages with 144 to 1,020 pins (see Tables 4 through 7)
- FineLine BGA® packages maximize board space efficiency

Advanced software support

 Software design support and automatic place-and-route provided by the Altera® Quartus® II development system for

Table 5. APEX 20K F	ineLine BGA Pack	age Options & I/C	O Count Note	s (1), (2)	
Device	144 Pin	324 Pin	484 Pin	672 Pin	1,020 Pin
EP20K30E	93	128			
EP20K60E	93	196			
EP20K100		252			
EP20K100E	93	246			
EP20K160E			316		
EP20K200			382		
EP20K200E			376	376	
EP20K300E				408	
EP20K400				502 <i>(3)</i>	
EP20K400E				488 (3)	
EP20K600E				508 (3)	588
EP20K1000E				508 (3)	708
EP20K1500E					808

Notes to Tables 4 and 5:

- (1) I/O counts include dedicated input and clock pins.
- (2) APEX 20K device package types include thin quad flat pack (TQFP), plastic quad flat pack (PQFP), power quad flat pack (RQFP), 1.27-mm pitch ball-grid array (BGA), 1.00-mm pitch FineLine BGA, and pin-grid array (PGA) packages.
- (3) This device uses a thermally enhanced package, which is taller than the regular package. Consult the *Altera Device Package Information Data Sheet* for detailed package size information.

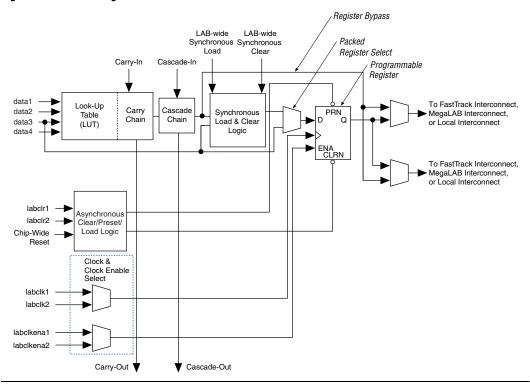

Table 6. APEX 20K QFP, BGA & PGA Package Sizes									
Feature	144-Pin TQFP	208-Pin QFP	240-Pin QFP	356-Pin BGA	652-Pin BGA	655-Pin PGA			
Pitch (mm)	0.50	0.50	0.50	1.27	1.27	_			
Area (mm ²)	484	924	1,218	1,225	2,025	3,906			
$\begin{array}{c} \text{Length} \times \text{Width} \\ \text{(mm} \times \text{mm)} \end{array}$	22 × 22	30.4 × 30.4	34.9 × 34.9	35 × 35	45 × 45	62.5 × 62.5			

Table 7. APEX 20K FineLine BGA Package Sizes							
Feature 144 Pin 324 Pin 484 Pin 672 Pin 1,020 Pin							
Pitch (mm)	1.00	1.00	1.00	1.00	1.00		
Area (mm ²)	169	361	529	729	1,089		
$Length \times Width \ (mm \times mm)$	13 × 13	19×19	23 × 23	27 × 27	33 × 33		

Logic Element

The LE, the smallest unit of logic in the APEX 20K architecture, is compact and provides efficient logic usage. Each LE contains a four-input LUT, which is a function generator that can quickly implement any function of four variables. In addition, each LE contains a programmable register and carry and cascade chains. Each LE drives the local interconnect, MegaLAB interconnect, and FastTrack Interconnect routing structures. See Figure 5.

Figure 5. APEX 20K Logic Element

Each LE's programmable register can be configured for D, T, JK, or SR operation. The register's clock and clear control signals can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the register is bypassed and the output of the LUT drives the outputs of the LE.

LE Operating Modes

The APEX 20K LE can operate in one of the following three modes:

- Normal mode
- Arithmetic mode
- Counter mode

Each mode uses LE resources differently. In each mode, seven available inputs to the LE—the four data inputs from the LAB local interconnect, the feedback from the programmable register, and the carry-in and cascade-in from the previous LE—are directed to different destinations to implement the desired logic function. LAB-wide signals provide clock, asynchronous clear, asynchronous preset, asynchronous load, synchronous clear, synchronous load, and clock enable control for the register. These LAB-wide signals are available in all LE modes.

The Quartus II software, in conjunction with parameterized functions such as LPM and DesignWare functions, automatically chooses the appropriate mode for common functions such as counters, adders, and multipliers. If required, the designer can also create special-purpose functions that specify which LE operating mode to use for optimal performance. Figure 8 shows the LE operating modes.

Source	Destination										
	Row I/O Pin	Column I/O Pin	LE	ESB	Local Interconnect	MegaLAB Interconnect	Row FastTrack Interconnect	Column FastTrack Interconnect	FastRow Interconnect		
Row I/O Pin					✓	✓	✓	✓			
Column I/O Pin								✓	√ (1)		
LE					✓	✓	✓	✓			
ESB					✓	✓	✓	✓			
Local Interconnect	✓	✓	✓	✓							
MegaLAB Interconnect					~						
Row FastTrack Interconnect						✓		✓			
Column						✓	✓				
FastTrack Interconnect											
FastRow Interconnect					✓ (1)						

Note to Table 9:

(1) This connection is supported in APEX 20KE devices only.

Product-Term Logic

The product-term portion of the MultiCore architecture is implemented with the ESB. The ESB can be configured to act as a block of macrocells on an ESB-by-ESB basis. Each ESB is fed by 32 inputs from the adjacent local interconnect; therefore, it can be driven by the MegaLAB interconnect or the adjacent LAB. Also, nine ESB macrocells feed back into the ESB through the local interconnect for higher performance. Dedicated clock pins, global signals, and additional inputs from the local interconnect drive the ESB control signals.

In product-term mode, each ESB contains 16 macrocells. Each macrocell consists of two product terms and a programmable register. Figure 13 shows the ESB in product-term mode.

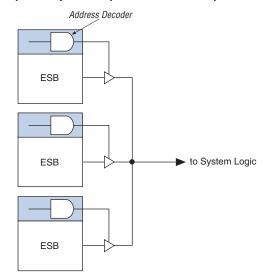


Figure 18. Deep Memory Block Implemented with Multiple ESBs

The ESB implements two forms of dual-port memory: read/write clock mode and input/output clock mode. The ESB can also be used for bidirectional, dual-port memory applications in which two ports read or write simultaneously. To implement this type of dual-port memory, two or four ESBs are used to support two simultaneous reads or writes. This functionality is shown in Figure 19.

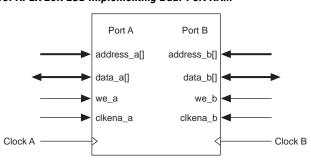
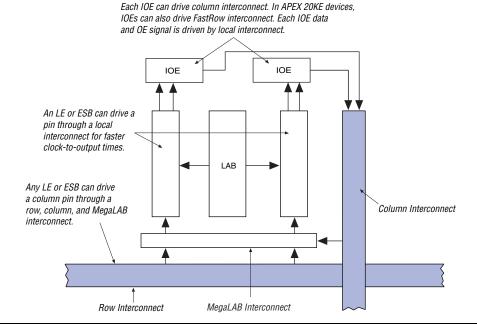
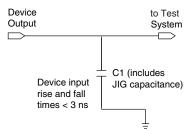



Figure 19. APEX 20K ESB Implementing Dual-Port RAM

Figure 28 shows how a column IOE connects to the interconnect.


Figure 28. Column IOE Connection to the Interconnect

Dedicated Fast I/O Pins

APEX 20KE devices incorporate an enhancement to support bidirectional pins with high internal fanout such as PCI control signals. These pins are called Dedicated Fast I/O pins (FAST1, FAST2, FAST3, and FAST4) and replace dedicated inputs. These pins can be used for fast clock, clear, or high fanout logic signal distribution. They also can drive out. The Dedicated Fast I/O pin data output and tri-state control are driven by local interconnect from the adjacent MegaLAB for high speed.

Figure 32. APEX 20K AC Test Conditions Note (1)

Note to Figure 32:

(1) Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fast-ground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result.

Operating Conditions

Tables 23 through 26 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 2.5-V APEX 20K devices.

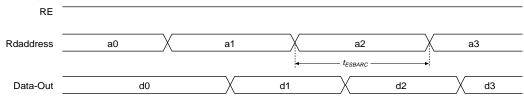
Table 2	3. APEX 20K 5.0-V Tolerant L	Device Absolute Maximum Ratings N	otes (1), (2)		
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage	With respect to ground (3)	-0.5	3.6	V
V _{CCIO}			-0.5	4.6	V
V _I	DC input voltage		-2.0	5.75	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	° C
T _{AMB}	Ambient temperature	Under bias	-65	135	° C
TJ	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	° C
		Ceramic PGA packages, under bias		150	°C

Table 2	Table 26. APEX 20K 5.0-V Tolerant Device Capacitance Notes (2), (14)						
Symbol	Parameter	Conditions	Min	Max	Unit		
C _{IN}	Input capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF		
C _{INCLK}	Input capacitance on dedicated clock pin	V _{IN} = 0 V, f = 1.0 MHz		12	pF		
C _{OUT}	Output capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF		

Notes to Tables 23 through 26:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) All APEX 20K devices are 5.0-V tolerant.
- (3) Minimum DC input is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (4) Numbers in parentheses are for industrial-temperature-range devices.
- (5) Maximum V_{CC} rise time is 100 ms, and V_{CC} must rise monotonically.
- (6) All pins, including dedicated inputs, clock I/O, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (7) Typical values are for $T_A = 25^{\circ}$ C, $V_{CCINT} = 2.5$ V, and $V_{CCIO} = 2.5$ or 3.3 V.
- (8) These values are specified in the APEX 20K device recommended operating conditions, shown in Table 26 on page 62.
- (9) The APEX 20K input buffers are compatible with 2.5-V and 3.3-V (LVTTL and LVCMOS) signals. Additionally, the input buffers are 3.3-V PCI compliant when V_{CCIO} and V_{CCINT} meet the relationship shown in Figure 33 on page 68.
- (10) The I_{OH} parameter refers to high-level TTL, PCI or CMOS output current.
- (11) The I_{OL} parameter refers to low-level TTL, PCI, or CMOS output current. This parameter applies to open-drain pins as well as output pins.
- (12) This value is specified for normal device operation. The value may vary during power-up.
- (13) Pin pull-up resistance values will be lower if an external source drives the pin higher than V_{CCIO} .
- (14) Capacitance is sample-tested only.

Tables 27 through 30 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for 1.8-V APEX 20KE devices.


Table 2	Table 27. APEX 20KE Device Absolute Maximum Ratings Note (1)							
Symbol	Parameter	Conditions	Min	Max	Unit			
V _{CCINT}	Supply voltage	With respect to ground (2)	-0.5	2.5	V			
V_{CCIO}			-0.5	4.6	٧			
V _I	DC input voltage		-0.5	4.6	V			
I _{OUT}	DC output current, per pin		-25	25	mA			
T _{STG}	Storage temperature	No bias	-65	150	° C			
T _{AMB}	Ambient temperature	Under bias	-65	135	° C			
TJ	Junction temperature	PQFP, RQFP, TQFP, and BGA packages, under bias		135	° C			
		Ceramic PGA packages, under bias		150	° C			

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IH}	High-level LVTTL, CMOS, or 3.3-V PCI input voltage		1.7, 0.5 × V _{CCIO} (10)		4.1	V
V _{IL}	Low-level LVTTL, CMOS, or 3.3-V PCI input voltage		-0.5		0.8, 0.3 × V _{CCIO} (10)	V
V _{OH}	3.3-V high-level LVTTL output voltage	I _{OH} = -12 mA DC, V _{CCIO} = 3.00 V (11)	2.4			V
	3.3-V high-level LVCMOS output voltage	$I_{OH} = -0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V } (11)$	V _{CCIO} - 0.2			V
	3.3-V high-level PCI output voltage	$I_{OH} = -0.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (11)	0.9 × V _{CCIO}			V
	2.5-V high-level output voltage	I _{OH} = -0.1 mA DC, V _{CCIO} = 2.30 V (11)	2.1			V
		$I_{OH} = -1 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V } (11)$	2.0			V
		$I_{OH} = -2 \text{ mA DC},$ $V_{CCIO} = 2.30 \text{ V } (11)$	1.7			V
V _{OL}	3.3-V low-level LVTTL output voltage	I_{OL} = 12 mA DC, V_{CCIO} = 3.00 V (12)			0.4	V
	3.3-V low-level LVCMOS output voltage	$I_{OL} = 0.1 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ V } (12)$			0.2	V
	3.3-V low-level PCI output voltage	$I_{OL} = 1.5 \text{ mA DC},$ $V_{CCIO} = 3.00 \text{ to } 3.60 \text{ V}$ (12)			0.1 × V _{CCIO}	V
	2.5-V low-level output voltage	I _{OL} = 0.1 mA DC, V _{CCIO} = 2.30 V (12)			0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (12)			0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (12)			0.7	V
I _I	Input pin leakage current	V _I = 4.1 to -0.5 V (13)	-10		10	μΑ
I _{OZ}	Tri-stated I/O pin leakage current	$V_0 = 4.1 \text{ to } -0.5 \text{ V } (13)$	-10		10	μΑ
I _{CC0}	V _{CC} supply current (standby) (All ESBs in power-down mode)	$V_{I} =$ ground, no load, no toggling inputs, -1 speed grade		10		mA
		V _I = ground, no load, no toggling inputs, -2, -3 speed grades		5		mA
R _{CONF}	Value of I/O pin pull-up resistor	V _{CCIO} = 3.0 V (14)	20		50	kΩ
	before and during configuration	V _{CCIO} = 2.375 V (14)	30		80	kΩ
		V _{CCIO} = 1.71 V (14)	60		150	kΩ

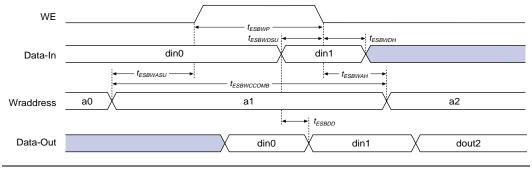
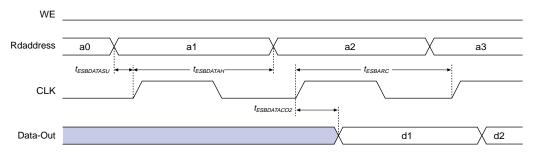

Figures 38 and 39 show the asynchronous and synchronous timing waveforms, respectively, for the ESB macroparameters in Table 31.

Figure 38. ESB Asynchronous Timing Waveforms



ESB Asynchronous Write

Figure 39. ESB Synchronous Timing Waveforms

ESB Synchronous Read

ESB Synchronous Write (ESB Output Registers Used)

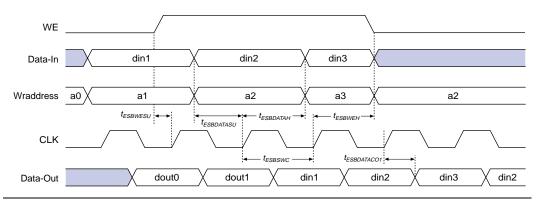


Figure 40 shows the timing model for bidirectional I/O pin timing.

Symbol	-	1		-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		2.03		2.86		4.24	ns
t _{ESBSRC}		2.58		3.49		5.02	ns
t _{ESBAWC}		3.88		5.45		8.08	ns
t _{ESBSWC}		4.08		5.35		7.48	ns
t _{ESBWASU}	1.77		2.49		3.68		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.95		2.74		4.05		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.96		2.75		4.07		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.80		2.73		4.28		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.07		0.48		1.17		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.30		0.80		1.64		ns
t _{ESBRADDRSU}	0.37		0.90		1.78		ns
t _{ESBDATACO1}		1.11		1.32		1.67	ns
t _{ESBDATACO2}		2.65		3.73		5.53	ns
t _{ESBDD}		3.88		5.45		8.08	ns
t _{PD}		1.91		2.69		3.98	ns
t _{PTERMSU}	1.04		1.71		2.82		ns
t _{PTERMCO}		1.13		1.34		1.69	ns

Table 51. EP2	Table 51. EP20K30E f _{MAX} Routing Delays										
Symbol	Symbol -1 -2 -3					Unit					
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.24		0.27		0.31	ns				
t _{F5-20}		1.03		1.14		1.30	ns				
t _{F20+}		1.42		1.54		1.77	ns				

Symbol	-1	Į	-	-2		3	Unit
	Min	Max	Min	Max	Min	Max	
t _{CH}	0.55		0.78		1.15		ns
t _{CL}	0.55		0.78		1.15		ns
t _{CLRP}	0.22		0.31		0.46		ns
t _{PREP}	0.22		0.31		0.46		ns
t _{ESBCH}	0.55		0.78		1.15		ns
t _{ESBCL}	0.55		0.78		1.15		ns
t _{ESBWP}	1.43		2.01		2.97		ns
t _{ESBRP}	1.15		1.62		2.39		ns

Symbol	-1		-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.02		2.13		2.24		ns
t _{INH}	0.00		0.00		0.00		ns
t _{ouтco}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{INSUPLL}	2.11		2.23		=		ns
t _{INHPLL}	0.00		0.00		=		ns
t _{OUTCOPLL}	0.50	2.60	0.50	2.88	-	-	ns

Symbol	-1		-2		-3		Unit
	Min	Max	Min	Max	Min	Max	
t _{INSUBIDIR}	1.85		1.77		1.54		ns
t _{INHBIDIR}	0.00		0.00		0.00		ns
t _{OUTCOBIDIR}	2.00	4.88	2.00	5.36	2.00	5.88	ns
t _{XZBIDIR}		7.48		8.46		9.83	ns
t _{ZXBIDIR}		7.48		8.46		9.83	ns
t _{INSUBIDIRPLL}	4.12		4.24		=		ns
t _{INHBIDIRPLL}	0.00		0.00		-		ns
t _{OUTCOBIDIRPLL}	0.50	2.60	0.50	2.88	-	-	ns
t _{XZBIDIRPLL}		5.21		5.99		-	ns
t _{ZXBIDIRPLL}		5.21		5.99		-	ns

Symbol	-	1		-2	;	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.83		2.57		3.79	ns
t _{ESBSRC}		2.46		3.26		4.61	ns
t _{ESBAWC}		3.50		4.90		7.23	ns
t _{ESBSWC}		3.77		4.90		6.79	ns
t _{ESBWASU}	1.59		2.23		3.29		ns
t _{ESBWAH}	0.00		0.00		0.00		ns
t _{ESBWDSU}	1.75		2.46		3.62		ns
t _{ESBWDH}	0.00		0.00		0.00		ns
t _{ESBRASU}	1.76		2.47		3.64		ns
t _{ESBRAH}	0.00		0.00		0.00		ns
t _{ESBWESU}	1.68		2.49		3.87		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.08		0.43		1.04		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.29		0.72		1.46		ns
t _{ESBRADDRSU}	0.36		0.81		1.58		ns
t _{ESBDATACO1}		1.06		1.24		1.55	ns
t _{ESBDATACO2}		2.39		3.35		4.94	ns
t _{ESBDD}		3.50		4.90		7.23	ns
t _{PD}		1.72		2.41		3.56	ns
t _{PTERMSU}	0.99		1.56		2.55		ns
t _{PTERMCO}		1.07		1.26		1.08	ns

Table 62. EP20K	I GOL IMAX LOL	, iming mid	1		Ī		1
Symbol	-	1		-2	-:	3	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.61		1.84		1.97	ns
t _{ESBSRC}		2.57		2.97		3.20	ns
t _{ESBAWC}		0.52		4.09		4.39	ns
t _{ESBSWC}		3.17		3.78		4.09	ns
t _{ESBWASU}	0.56		6.41		0.63		ns
t _{ESBWAH}	0.48		0.54		0.55		ns
t _{ESBWDSU}	0.71		0.80		0.81		ns
t _{ESBWDH}	.048		0.54		0.55		ns
t _{ESBRASU}	1.57		1.75		1.87		ns
t _{ESBRAH}	0.00		0.00		0.20		ns
t _{ESBWESU}	1.54		1.72		1.80		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	-0.16		-0.20		-0.20		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.12		0.08		0.13		ns
t _{ESBRADDRSU}	0.17		0.15		0.19		ns
t _{ESBDATACO1}		1.20		1.39		1.52	ns
t _{ESBDATACO2}		2.54		2.99		3.22	ns
t _{ESBDD}		3.06		3.56		3.85	ns
t _{PD}		1.73		2.02		2.20	ns
t _{PTERMSU}	1.11		1.26		1.38		ns
t _{PTERMCO}		1.19		1.40		1.08	ns

Table 63. EP2	Table 63. EP20K100E f _{MAX} Routing Delays										
Symbol	-	1	-	-2	-3		Unit				
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.24		0.27		0.29	ns				
t _{F5-20}		1.04		1.26		1.52	ns				
t _{F20+}		1.12		1.36		1.86	ns				

Table 76. EP20K200E Minimum Pulse Width Timing Parameters									
Symbol	-1		-2		-3		Unit		
	Min	Max	Min	Max	Min	Max			
t _{CH}	1.36		2.44		2.65		ns		
t _{CL}	1.36		2.44		2.65		ns		
t _{CLRP}	0.18		0.19		0.21		ns		
t _{PREP}	0.18		0.19		0.21		ns		
t _{ESBCH}	1.36		2.44		2.65		ns		
t _{ESBCL}	1.36		2.44		2.65		ns		
t _{ESBWP}	1.18		1.48		1.76		ns		
t _{ESBRP}	0.95		1.17		1.41		ns		

Symbol	-1		-	-2		-3	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.24		2.35		2.47		ns
t _{INH}	0.00		0.00		0.00		ns
t _{outco}	2.00	5.12	2.00	5.62	2.00	6.11	ns
t _{INSUPLL}	2.13		2.07		-		ns
t _{INHPLL}	0.00		0.00		-		ns
t _{OUTCOPLL}	0.50	3.01	0.50	3.36	-	-	ns

Symbol	-1 Spee	d Grade	-2 Spe	ed Grade	-3 Spee	d Grade	Unit
	Min	Max	Min	Max	Min	Max	
t _{ESBARC}		1.78		2.02		1.95	ns
t _{ESBSRC}		2.52		2.91		3.14	ns
t _{ESBAWC}		3.52		4.11		4.40	ns
t _{ESBSWC}		3.23		3.84		4.16	ns
t _{ESBWASU}	0.62		0.67		0.61		ns
t _{ESBWAH}	0.41		0.55		0.55		ns
t _{ESBWDSU}	0.77		0.79		0.81		ns
t _{ESBWDH}	0.41		0.55		0.55		ns
t _{ESBRASU}	1.74		1.92		1.85		ns
t _{ESBRAH}	0.00		0.01		0.23		ns
t _{ESBWESU}	2.07		2.28		2.41		ns
t _{ESBWEH}	0.00		0.00		0.00		ns
t _{ESBDATASU}	0.25		0.27		0.29		ns
t _{ESBDATAH}	0.13		0.13		0.13		ns
t _{ESBWADDRSU}	0.11		0.04		0.11		ns
t _{ESBRADDRSU}	0.14		0.11		0.16		ns
t _{ESBDATACO1}		1.29		1.50		1.63	ns
t _{ESBDATACO2}		2.55		2.99		3.22	ns
t _{ESBDD}		3.12		3.57		3.85	ns
t _{PD}		1.84		2.13		2.32	ns
t _{PTERMSU}	1.08		1.19		1.32		ns

1.53

1.66

ns

1.31

 t_{PTERMCO}

Table 99. EP2	Table 99. EP20K1000E f _{MAX} Routing Delays										
Symbol	-1 Spee	d Grade	-2 Speed Grade -3 Speed Grade		Unit						
	Min	Max	Min	Max	Min	Max					
t _{F1-4}		0.27		0.27		0.27	ns				
t _{F5-20}		1.45		1.63		1.75	ns				
t _{F20+}		4.15		4.33		4.97	ns				

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade		
	Min	Max	Min	Max	Min	Max		
t _{CH}	1.25		1.43		1.67		ns	
t _{CL}	1.25		1.43		1.67		ns	
t _{CLRP}	0.20		0.20		0.20		ns	
t _{PREP}	0.20		0.20		0.20		ns	
t _{ESBCH}	1.25		1.43		1.67		ns	
t _{ESBCL}	1.25		1.43		1.67		ns	
t _{ESBWP}	1.28		1.51		1.65		ns	
t _{ESBRP}	1.11		1.29		1.41		ns	

Symbol	-1 Speed Grade		-2 Spee	-2 Speed Grade		-3 Speed Grade	
	Min	Max	Min	Max	Min	Max	
t _{INSU}	2.70		2.84		2.97		ns
t _{INH}	0.00		0.00		0.00		ns
t _{OUTCO}	2.00	5.75	2.00	6.33	2.00	6.90	ns
t _{INSUPLL}	1.64		2.09		=		ns
t _{INHPLL}	0.00		0.00		=		ns
t _{OUTCOPLL}	0.50	2.25	0.50	2.99	-	-	ns

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_req@altera.com Copyright © 2004 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes

to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

